Question Number 112934 by mr W last updated on 10/Sep/20 $$\mathrm{There}\:\mathrm{are}\:\mathrm{4}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{2}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books},\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}\:\mathrm{and}\:\mathrm{2} \\ $$$$\mathrm{identical}\:\mathrm{biology}\:\mathrm{books}.\:\mathrm{in}\:\mathrm{how}\:\mathrm{many} \\ $$$$\mathrm{ways}\:\:\mathrm{can}\:\mathrm{you}\:\mathrm{compile}\:\mathrm{the}\:\mathrm{10}\:\mathrm{books} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually} \\ $$$$\mathrm{adjacent}. \\ $$…
Question Number 178454 by SLVR last updated on 16/Oct/22 $${In}\:{a}\:{chess}\:{board}\:{number}\:{of}\:{unit}\:{squares} \\ $$$$\left.{with}\:\mathrm{1}\right){one}\:{vertex}\:{common}? \\ $$$$\left.\mathrm{2}\right)\mathrm{2}\:{vertices}\:{common}?? \\ $$$$\left.\mathrm{3}\right)\mathrm{2}\:{sides}\:{common}?? \\ $$ Answered by SLVR last updated on 16/Oct/22…
Question Number 178395 by mr W last updated on 16/Oct/22 $${How}\:{many}\:\mathrm{5}\:{digit}\:{numbers}\:{with} \\ $$$${different}\:{digits}\:{are}\:{multiple}\:{of}\:\mathrm{9}? \\ $$ Answered by cortano1 last updated on 16/Oct/22 $$\left(\mathrm{1}\right)\mathrm{1}+\mathrm{5}+\mathrm{6}+\mathrm{7}+\mathrm{8}\Rightarrow\mathrm{5}! \\ $$$$\left(\mathrm{2}\right)\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{8}\Rightarrow\mathrm{5}!…
Question Number 112812 by Aina Samuel Temidayo last updated on 09/Sep/20 $$\mathrm{There}\:\mathrm{are}\:\mathrm{2016}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{drawn}\:\mathrm{on} \\ $$$$\mathrm{a}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{are} \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{one}\:\mathrm{another}.\:\frac{\mathrm{3}}{\mathrm{8}}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{meet}\:\mathrm{at}\:\mathrm{a}\:\mathrm{point}\:\mathrm{and}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{remaining}\:\mathrm{ones}\:\mathrm{intersect}\:\mathrm{with}\:\mathrm{all} \\ $$$$\mathrm{other}\:\mathrm{lines}\:\mathrm{on}\:\mathrm{the}\:\mathrm{board}.\:\mathrm{Determine} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{intersections} \\…
Question Number 178173 by cortano1 last updated on 13/Oct/22 Answered by Acem last updated on 13/Oct/22 $$\:{No}.\mathrm{1},\:{NumWrds}_{\mathrm{5}\ell{s}} =\:{P}_{\mathrm{21}} ^{\:\mathrm{3}} ×{P}_{\mathrm{5}} ^{\:\mathrm{2}} =\:\mathrm{159}\:\mathrm{600}\:{words} \\ $$$$ \\…
Question Number 112538 by Aina Samuel Temidayo last updated on 08/Sep/20 Answered by floor(10²Eta[1]) last updated on 08/Sep/20 $$=\mathrm{log}_{\mathrm{n}} \mathrm{2}+\mathrm{2log}_{\mathrm{n}} \mathrm{2}+\mathrm{3log}_{\mathrm{n}} \mathrm{2}+…+\mathrm{2015log}_{\mathrm{n}} \mathrm{2} \\ $$$$=\mathrm{log}_{\mathrm{n}}…
Question Number 112534 by Aina Samuel Temidayo last updated on 08/Sep/20 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{points}\:\mathrm{to}\:\mathrm{be}\:\mathrm{distributed}\:\mathrm{within} \\ $$$$\mathrm{a}\:\mathrm{3}×\mathrm{6}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{whose}\:\mathrm{distance}\:\mathrm{apart}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\sqrt{\mathrm{2}}? \\ $$ Commented by Aina…
Question Number 112533 by Aina Samuel Temidayo last updated on 08/Sep/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{number}\:\mathrm{of}\:\mathrm{n} \\ $$$$\mathrm{integers}\:\mathrm{to}\:\mathrm{be}\:\mathrm{selected}\:\mathrm{from} \\ $$$$\mathrm{S}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},…\mathrm{11}\right\}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{difference} \\ $$$$\mathrm{of}\:\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{n}\:\mathrm{integers}\:\mathrm{is}\:\mathrm{7}. \\ $$ Commented by Aina Samuel Temidayo…
Question Number 112531 by Aina Samuel Temidayo last updated on 08/Sep/20 $$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{cardboard}\:\mathrm{is}\:\mathrm{8cm}\:\mathrm{long} \\ $$$$\mathrm{and}\:\mathrm{6cm}\:\mathrm{wide}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{least} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{beads}\:\mathrm{you}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{beads}\:\mathrm{that}\:\mathrm{are}\:\mathrm{less}\:\mathrm{than} \\ $$$$\sqrt{\mathrm{10}}\mathrm{cm}\:\mathrm{apart}. \\ $$ Commented…
Question Number 112195 by 675480065 last updated on 06/Sep/20 $$\underset{\mathrm{n}=\mathrm{1}\:} {\overset{\mathrm{11}} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} \left(\mathrm{4n}+\mathrm{2}\right)}{\mathrm{4n}\left(\mathrm{n}+\mathrm{1}\right)} \\ $$$$\mathrm{please}\:\mathrm{help} \\ $$ Answered by MJS_new last updated on 06/Sep/20 $$\mathrm{simply}\:\mathrm{calculate}\:\mathrm{it}!\:\mathrm{it}'\mathrm{s}\:\mathrm{only}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{11}…