Menu Close

Category: Permutation and Combination

SUCCESSFULLY-How-many-different-words-can-you-form-using-these-letters-so-that-no-two-same-letters-are-adjacent-

Question Number 109387 by mr W last updated on 19/Sep/20 $$\boldsymbol{\mathrm{SUCCESSFULLY}} \\ $$$${How}\:{many}\:{different}\:{words}\:{can}\:{you} \\ $$$${form}\:{using}\:{these}\:{letters}\:{so}\:{that}\:{no} \\ $$$${two}\:{same}\:{letters}\:{are}\:{adjacent}? \\ $$ Commented by bobhans last updated on…

Question-43824

Question Number 43824 by Necxx last updated on 15/Sep/18 Answered by MJS last updated on 16/Sep/18 $$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!+\left(\frac{\mathrm{1}}{\mathrm{2}}\right)!=\sqrt{\pi} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{1}!=\mathrm{1} \\ $$$$\left(\mathrm{B}\right)\:\:\mathrm{sin}\:\mathrm{45}°\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\left(\mathrm{C}\right)\:\:\sqrt{\mathrm{arccos}\:−\mathrm{1}}=\sqrt{\pi}…

Find-the-number-of-ways-a-committee-of-4-people-can-be-chosen-from-a-group-of-5-men-and-7-women-when-it-contains-people-of-both-sexes-and-there-are-at-least-as-many-women-as-men-

Question Number 174855 by byaw last updated on 12/Aug/22 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\: \\ $$$$\mathrm{a}\:\mathrm{committee}\:\mathrm{of}\:\mathrm{4}\:\mathrm{people}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{chosen}\:\mathrm{from}\:\mathrm{a}\:\mathrm{group}\:\mathrm{of}\:\mathrm{5}\:\mathrm{men} \\ $$$$\mathrm{and}\:\mathrm{7}\:\mathrm{women}\:\mathrm{when}\:\mathrm{it}\:\mathrm{contains} \\ $$$$\mathrm{people}\:\mathrm{of}\:\mathrm{both}\:\mathrm{sexes}\:\mathrm{and} \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least}\:\mathrm{as}\:\mathrm{many} \\ $$$$\mathrm{women}\:\mathrm{as}\:\mathrm{men}. \\ $$ Answered…

An-unfair-coin-with-the-probability-of-getting-head-in-one-toss-1-5-If-coin-tosses-n-times-the-probability-of-getting-2-heads-is-equal-to-the-probability-of-getting-3-heads-Find-n-

Question Number 43659 by Joel578 last updated on 13/Sep/18 $$\mathrm{An}\:\mathrm{unfair}\:\mathrm{coin}\:\mathrm{with}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\:\mathrm{getting} \\ $$$$\mathrm{head}\:\mathrm{in}\:\mathrm{one}\:\mathrm{toss}\:=\:\frac{\mathrm{1}}{\mathrm{5}}. \\ $$$$\mathrm{If}\:\mathrm{coin}\:\mathrm{tosses}\:{n}\:\mathrm{times},\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of} \\ $$$$\mathrm{getting}\:\mathrm{2}\:\mathrm{heads}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{of}\: \\ $$$$\mathrm{getting}\:\mathrm{3}\:\mathrm{heads}.\:\mathrm{Find}\:{n} \\ $$ Commented by math1967 last updated…

how-many-odd-numbers-greater-than-60000-can-be-made-from-the-digits-5-6-7-8-9-0-if-no-number-contains-any-digit-more-than-once-

Question Number 43343 by pieroo last updated on 10/Sep/18 $$\mathrm{how}\:\mathrm{many}\:\mathrm{odd}\:\mathrm{numbers}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{60000}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{0}\:\mathrm{if}\:\mathrm{no}\:\mathrm{number}\:\mathrm{contains} \\ $$$$\mathrm{any}\:\mathrm{digit}\:\mathrm{more}\:\mathrm{than}\:\mathrm{once}? \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18 $$\underset{\mathrm{5}} {−}\:\underset{\mathrm{4}}…

BeMath-1-find-1-2-2-0-pi-2-x-sin-x-1-cos-x-2-dx-

Question Number 108450 by bemath last updated on 17/Aug/20 $$\:\:\frac{\mathcal{B}{e}\mathcal{M}{ath}}{\subset\supset} \\ $$$$\left(\mathrm{1}\right){find}\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)! \\ $$$$\left(\mathrm{2}\right)\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{x}\:\mathrm{sin}\:{x}}{\left(\mathrm{1}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }\:{dx} \\ $$ Commented by Smail last updated on…

0-y-a-1-1-y-b-dy-u-1-1-y-0-1-1-u-a-1-u-a-1-u-b-du-u-2-0-1-u-b-a-1-1-u-a-1-du-

Question Number 173975 by savitar last updated on 22/Jul/22 $$ \\ $$$$\: \\ $$$$ \\ $$$$\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \frac{{y}^{{a}−\mathrm{1}} }{\left(\mathrm{1}+{y}\right)^{{b}} }\:{dy}\:\overset{{u}=\frac{\mathrm{1}}{\mathrm{1}+{y}}} {=}\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−{u}\right)^{{a}−\mathrm{1}} }{{u}^{{a}−\mathrm{1}} }\:{u}^{{b}}…