Question Number 102816 by mr W last updated on 11/Jul/20 $${How}\:{many}\:\mathrm{6}\:{digit}\:{numbers}\:{exist} \\ $$$${whose}\:{digits}\:{have}\:{exactly}\:{the}\:{sum}\:\mathrm{13}? \\ $$$$ \\ $$$${for}\:{example}\:\mathrm{120505}\:{is}\:{such}\:{a}\:{number}. \\ $$ Commented by Rasheed.Sindhi last updated on…
Question Number 102800 by bramlex last updated on 11/Jul/20 $$\mathrm{There}\:\mathrm{are}\:\mathrm{14}\:\mathrm{boys}\:\mathrm{and}\:\mathrm{10}\:\mathrm{girls}\:\mathrm{in} \\ $$$$\mathrm{a}\:\mathrm{classroom}.\:\mathrm{The}\:\mathrm{teacher}\:\mathrm{wants} \\ $$$$\mathrm{to}\:\mathrm{form}\:\mathrm{a}\:\mathrm{team}\:\mathrm{of}\:\mathrm{5}\:\mathrm{students}\:. \\ $$$$\mathrm{The}\:\mathrm{team}\:\mathrm{must}\:\mathrm{have}\:\mathrm{a}\:\mathrm{least}\:\mathrm{two} \\ $$$$\mathrm{boys}\:\mathrm{and}\:\mathrm{two}\:\mathrm{girls}\:.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{the}\:\mathrm{team}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{chosen}.\: \\ $$ Answered…
Question Number 168291 by MikeH last updated on 07/Apr/22 $$\int{t}^{\mathrm{7}} \mathrm{sin}\left({t}^{\mathrm{7}} \right){dt} \\ $$ Answered by Engr_Jidda last updated on 07/Apr/22 $${let}\:{t}^{\mathrm{7}} ={x}\:{then}\:{dt}=\mathrm{7}{t}^{\mathrm{6}} {dx} \\…
Question Number 167979 by nadovic last updated on 31/Mar/22 $$\mathrm{3}\:\mathrm{men}\:\mathrm{and}\:\mathrm{4}\:\mathrm{women}\:\mathrm{are}\:\mathrm{to}\:\mathrm{sit}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{table}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{possible}\:\mathrm{sitting}\:\mathrm{arrangements}\:\mathrm{if} \\ $$$$\:\left({a}\right)\:\mathrm{they}\:\mathrm{sit}\:\mathrm{in}\:\mathrm{a}\:\mathrm{row}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{men}\:\mathrm{must}\:\mathrm{not}\:\mathrm{sit}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{other}. \\ $$$$\:\left({b}\right)\:\mathrm{they}\:\mathrm{sit}\:\mathrm{in}\:\mathrm{circular}\:\mathrm{pattern}\:\mathrm{and} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{the}\:\mathrm{clockwise}\:\mathrm{and}\:\mathrm{anticlockwise} \\…
Question Number 102329 by bemath last updated on 08/Jul/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 36784 by Joel579 last updated on 05/Jun/18 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\:{r}\:\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}^{\mathrm{2}} \:=\:{n}\:\begin{pmatrix}{\mathrm{2}{n}\:−\:\mathrm{1}}\\{\:\:{n}\:−\:\mathrm{1}}\end{pmatrix} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 167765 by ArielVyny last updated on 24/Mar/22 $$ \\ $$show that two permutations are conjugate if their matrices are similar Terms of Service…
Question Number 36398 by NECx last updated on 01/Jun/18 $${Consider}\:{triangle}\:{ABC}.{If}\:\mathrm{206} \\ $$$${lines}\:{are}\:{drawn}\:{from}\:{A}\:{to}\:{BC}\:{how} \\ $$$${many}\:{triangles}\:{are}\:{formed}? \\ $$ Commented by Rasheed.Sindhi last updated on 02/Jun/18 $$\mathrm{207}+\mathrm{206}+…+\mathrm{1}=\frac{\mathrm{207}×\mathrm{208}}{\mathrm{2}}=\mathrm{21528} \\…
Question Number 101880 by mr W last updated on 05/Jul/20 $${Find}\:{the}\:{number}\:{of}\:{six}−{digit}\:{odd} \\ $$$${numbers}\:{without}\:{repeated}\:{digits}. \\ $$ Answered by bemath last updated on 05/Jul/20 $$\mathrm{5}×\mathrm{8}×{C}_{\mathrm{4}} ^{\mathrm{8}} ×\mathrm{4}!…
Question Number 101732 by mr W last updated on 04/Jul/20 $$\mathrm{There}\:\mathrm{are}\:\mathrm{10}\:\mathrm{identical}\:\mathrm{mathematics} \\ $$$$\mathrm{books},\:\mathrm{7}\:\mathrm{identical}\:\mathrm{physics}\:\mathrm{books} \\ $$$$\mathrm{and}\:\mathrm{5}\:\mathrm{identical}\:\mathrm{chemistry}\:\mathrm{books}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{compile}\: \\ $$$$\mathrm{the}\:\mathrm{books}\:\mathrm{under}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{that} \\ $$$$\mathrm{same}\:\mathrm{books}\:\mathrm{are}\:\mathrm{not}\:\mathrm{mutually}\:\mathrm{adjacent}. \\ $$ Commented by…