Question Number 165385 by SLVR last updated on 31/Jan/22 $${Number}\:{of}\:\:{ways}..{n}\: \\ $$$${differrnt}\:\:{things}\:{be}\:{distributed} \\ $$$${in}\:{r}\:{identical}\:{boxes}\:{so}\:{as} \\ $$$$\left.\mathrm{1}\right){empty}\:{box}\:{is}\:{allowed} \\ $$$$\left.\mathrm{2}\right){empty}\:{box}\:{not}\:{allowed} \\ $$$${Number}\:{of}\:{ways}…{n}\:{identical} \\ $$$${things}\:{be}\:{distributed}\:{to}\:{r} \\ $$$${identical}\:{boxes}\:{so}\:{as} \\…
Question Number 165376 by MikeH last updated on 31/Jan/22 $$\mathrm{Verify}\:\mathrm{wether}\:{f}\:\mathrm{is}\:\mathrm{invertible}\: \\ $$$${f}\:\left({x}\right)\:=\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{3}} \\ $$ Answered by Rasheed.Sindhi last updated on 31/Jan/22 $${f}\:\left({x}\right)\:=\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{3}} \\ $$$${y}=\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{3}} \\…
Question Number 165361 by MikeH last updated on 31/Jan/22 $$\mathrm{Obtain}\:\mathrm{a}\:\mathrm{general}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{sequence} \\ $$$$\:\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{4}}{\mathrm{5}},\frac{\mathrm{8}}{\mathrm{9}},\frac{\mathrm{16}}{\mathrm{17}},\frac{\mathrm{32}}{\mathrm{33}},… \\ $$$$\mathrm{assuming}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{continues}\:\mathrm{in}\:\mathrm{that} \\ $$$$\mathrm{pattern}. \\ $$ Commented by MJS_new last updated…
Question Number 164996 by Mathematification last updated on 24/Jan/22 Answered by mr W last updated on 25/Jan/22 $${AB}={x}_{\mathrm{1}} +{x}_{\mathrm{2}} \\ $$$${AB}=\sqrt{\left(\mathrm{3}+\mathrm{2}\right)^{\mathrm{2}} −\left(\mathrm{3}−\mathrm{2}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{2}+\mathrm{1}.\mathrm{5}\right)^{\mathrm{2}} −\left(\mathrm{4}.\mathrm{5}−\mathrm{2}\right)^{\mathrm{2}} }…
Question Number 99194 by bemath last updated on 19/Jun/20 Answered by bramlex last updated on 19/Jun/20 $${suppose}\:{probability}\:{win}\:{or}\:{draw}\:{or}\:{lose}\:{are} \\ $$$${same}\:{is}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${not}\:{to}\:{lose}\:{in}\:{those}\:{three}\:{matches}\: \\ $$$${case}\left(\mathrm{1}\right)\:\left(\mathrm{3}{w}\right)\Rightarrow\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} =\:\frac{\mathrm{1}}{\mathrm{27}} \\…
Question Number 164588 by ArielVyny last updated on 19/Jan/22 $${soit}\:{K}\:{un}\:{corps};\:{pour}\:{toute}\:{permutation} \\ $$$$\sigma\:{de}\:{S}_{{n}} ,\:{on}\:{note}\:{P}\left(\sigma\right)\:{sa}\:{matrice}\:{dans}\:{la}\:{base} \\ $$$${canonique}\:{de}\:{K}^{{n}} . \\ $$$${montrer}\:{que}\:{deux}\:{permutations}\:\sigma_{\mathrm{1}} \:{et}\:\sigma_{\mathrm{2}} \:{sont} \\ $$$${conjugues}\:{dans}\:{S}_{{n}} \:{si}\:{et}\:{seulement}\:{si}\: \\ $$$${P}\left(\sigma_{\mathrm{1}}…
Question Number 164544 by mr W last updated on 18/Jan/22 $${prove}\:{that}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{k}}\end{pmatrix}^{\mathrm{2}} =\frac{\left(\mathrm{2}{n}\right)!}{\left({n}!\right)^{\mathrm{2}} }−\mathrm{1} \\ $$ Answered by mindispower last updated on 18/Jan/22 $$=\underset{{k}=\mathrm{0}}…
Question Number 98406 by abdelaziz last updated on 13/Jun/20 $$\boldsymbol{{NB}}:\boldsymbol{\mathcal{P}}\left(\boldsymbol{\mathrm{E}}\right)\:\mathrm{means}\:\mathrm{a}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{part}\:\mathrm{of}\:\boldsymbol{\mathrm{E}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 98405 by abdelaziz last updated on 15/Jun/20 Answered by abdelaziz last updated on 14/Jun/20 $$\mathrm{i}\:\mathrm{need}\:\mathrm{help}\:\mathrm{here}\:\mathrm{please} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 32600 by Tinkutara last updated on 28/Mar/18 Commented by mrW2 last updated on 28/Mar/18 $${I}\:{think}\:{there}\:{are}\:\mathrm{15}!\:{ways}. \\ $$ Commented by Tinkutara last updated on…