Menu Close

Category: Permutation and Combination

2-Find-the-10th-trem-in-the-expansion-of-2x-y-2-

Question Number 26555 by das47955@mail.com last updated on 26/Dec/17 $$\left(\mathrm{2}\right)\:\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\mathrm{10}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{trem}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{expansion}}\:\boldsymbol{\mathrm{of}}\:\left(\mathrm{2}\boldsymbol{\mathrm{x}}−\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}\right) \\ $$ Commented by Rasheed.Sindhi last updated on 27/Dec/17 $$\left(\mathrm{2}\boldsymbol{\mathrm{x}}−\frac{\boldsymbol{\mathrm{y}}}{\mathrm{2}}\right)^{?} \\ $$ Terms…

A-number-of-four-different-digits-is-formed-by-using-the-digits-1-2-3-4-5-6-7-in-all-possible-ways-each-digit-occuring-once-only-find-how-many-of-them-are-greater-than-3400-

Question Number 26477 by NECx last updated on 26/Dec/17 $${A}\:{number}\:{of}\:{four}\:{different} \\ $$$${digits}\:{is}\:{formed}\:{by}\:{using}\:{the}\: \\ $$$${digits}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},{in}\:{all}\:{possible} \\ $$$${ways}\:{each}\:{digit}\:{occuring}\:{once} \\ $$$${only}.{find}\:{how}\:{many}\:{of}\:{them}\:{are} \\ $$$${greater}\:{than}\:\mathrm{3400} \\ $$ Answered by mrW1…

Find-the-number-of-all-possible-different-words-into-which-the-word-INTERFERE-can-be-converted-by-change-of-place-of-letters-if-no-two-consonants-must-be-together-

Question Number 26480 by NECx last updated on 26/Dec/17 $${Find}\:{the}\:{number}\:{of}\:{all}\:{possible} \\ $$$${different}\:{words}\:{into}\:{which}\:{the} \\ $$$${word}\:{INTERFERE}\:{can}\:{be}\: \\ $$$${converted}\:{by}\:{change}\:{of}\:{place}\:{of}\: \\ $$$${letters},{if}\:{no}\:{two}\:{consonants} \\ $$$${must}\:{be}\:{together}. \\ $$ Answered by mrW1…

How-many-numbers-less-than-1000-and-divisible-by-5-can-be-formed-with-the-digits-0-1-2-3-4-5-6-7-8-9-each-digit-not-occuring-more-than-once-in-each-number-

Question Number 26473 by NECx last updated on 25/Dec/17 $${How}\:{many}\:{numbers}\:{less}\:{than} \\ $$$$\mathrm{1000}\:{and}\:{divisible}\:{by}\:\mathrm{5}\:{can}\:{be} \\ $$$${formed}\:{with}\:{the}\:{digits}\:\mathrm{0},\:\mathrm{1},\:\mathrm{2}\:,\mathrm{3}\:,\mathrm{4}\:,\mathrm{5}\: \\ $$$$\mathrm{6}\:,\mathrm{7}\:,\mathrm{8}\:,\mathrm{9},{each}\:{digit}\:{not}\:{occuring} \\ $$$${more}\:{than}\:{once}\:{in}\:{each}\:{number}? \\ $$ Answered by mrW1 last updated…

how-many-ways-can-you-exchange-1-dollar-using-1-5-10-25-50-cents-example-1-dollar-100-cents-2-50cents-1-50-2-25-4-25-1-50-1-25-1-10-1-5-10-1-and-so-on-how-many-all-the-ways-

Question Number 157126 by malwan last updated on 20/Oct/21 $${how}\:{many}\:{ways}\:{can}\:{you} \\ $$$${exchange}\:\mathrm{1}\:{dollar}\:{using} \\ $$$$\left(\mathrm{1},\mathrm{5},\mathrm{10},\mathrm{25},\mathrm{50}\right)\:{cents} \\ $$$${example} \\ $$$$\mathrm{1}\:{dollar}\left(\mathrm{100}\:{cents}\right)=\mathrm{2}×\mathrm{50}{cents} \\ $$$$=\mathrm{1}×\mathrm{50}+\mathrm{2}×\mathrm{25}=\mathrm{4}×\mathrm{25} \\ $$$$=\mathrm{1}×\mathrm{50}+\mathrm{1}×\mathrm{25}+\mathrm{1}×\mathrm{10}+\mathrm{1}×\mathrm{5}+\mathrm{10}×\mathrm{1} \\ $$$${and}\:{so}\:{on} \\…

Show-that-the-coefficients-of-x-m-and-x-n-in-1-x-m-n-are-equal-

Question Number 25929 by 786786AM last updated on 16/Dec/17 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{x}^{\mathrm{m}} \:\mathrm{and}\:\mathrm{x}^{\mathrm{n}} \:\mathrm{in}\:\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{m}+\mathrm{n}} \mathrm{are}\:\mathrm{equal}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Expand-1-x-4-Hence-find-S-if-S-1-x-3-4-4-1-x-3-3-6-1-x-3-2-4-1-x-3-1-

Question Number 25928 by 786786AM last updated on 16/Dec/17 $$\mathrm{Expand}\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{4}} .\mathrm{H}\boldsymbol{\mathrm{ence}},\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{S}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{S}}=\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{4}} −\mathrm{4}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{3}} +\mathrm{6}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}−\mathrm{x}^{\mathrm{3}} \right)^{} +\mathrm{1}. \\ $$ Terms of Service Privacy…