Menu Close

Category: Permutation and Combination

How-many-of-the-number-formed-by-using-all-the-digits-1-2-3-4-5-6-only-once-divisible-by-25-

Question Number 155816 by cortano last updated on 05/Oct/21 $$\:\mathrm{How}\:\mathrm{many}\:\mathrm{of}\:\mathrm{the}\:\mathrm{number}\:\mathrm{formed} \\ $$$$\:\mathrm{by}\:\mathrm{using}\:\mathrm{all}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6} \\ $$$$\:\mathrm{only}\:\mathrm{once}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{25}. \\ $$ Answered by talminator2856791 last updated on 05/Oct/21 $$\:\mathrm{4}!\:=\:\mathrm{24} \\…

Find-the-coefficient-of-term-a-m-b-2m-in-1-a-m-1-b-n-m-1-a-b-m-

Question Number 155356 by qaz last updated on 29/Sep/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{term}\:“\:\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{2m}} \:''\:\mathrm{in}\:\left(\mathrm{1}+\mathrm{a}\right)^{\mathrm{m}} \left(\mathrm{1}+\mathrm{b}\right)^{\mathrm{n}+\mathrm{m}} \left(\mathrm{1}+\mathrm{a}+\mathrm{b}\right)^{\mathrm{m}} . \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Given-a-10-digit-number-X-1345789026-How-many-10-digit-number-that-can-be-made-using-every-digit-from-X-with-condition-If-a-number-n-is-located-in-k-th-position-of-X-then-the-new-created-numb

Question Number 88876 by Joel578 last updated on 13/Apr/20 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:{X}\:=\:\mathrm{1345789026} \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{10}−\mathrm{digit}\:\mathrm{number}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{made} \\ $$$$\mathrm{using}\:\mathrm{every}\:\mathrm{digit}\:\mathrm{from}\:{X},\:\mathrm{with}\:\mathrm{condition}: \\ $$$$\mathrm{If}\:\mathrm{a}\:\mathrm{number}\:{n}\:\:\mathrm{is}\:\mathrm{located}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position}\:\mathrm{of}\:{X},\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{new}\:\mathrm{created}\:\mathrm{number}\:\mathrm{must}\:\mathrm{not}\:\mathrm{contain} \\ $$$$\mathrm{number}\:{n}\:\mathrm{in}\:{k}^{{th}} \:\mathrm{position} \\ $$$$ \\…