Menu Close

Category: Permutation and Combination

An-eight-digit-number-is-formed-from-1-2-3-4-such-that-product-of-all-digits-is-always-3072-the-total-number-of-ways-is-23-8-C-k-where-the-value-of-k-is-

Question Number 21930 by Tinkutara last updated on 07/Oct/17 $$\mathrm{An}\:\mathrm{eight}\:\mathrm{digit}\:\mathrm{number}\:\mathrm{is}\:\mathrm{formed}\:\mathrm{from} \\ $$$$\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4}\:\mathrm{such}\:\mathrm{that}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:\mathrm{digits} \\ $$$$\mathrm{is}\:\mathrm{always}\:\mathrm{3072},\:\mathrm{the}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{is}\:\left(\mathrm{23}.\:^{\mathrm{8}} {C}_{{k}} \right),\:\mathrm{where}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k} \\ $$$$\mathrm{is} \\ $$ Commented by mrW1…

The-number-of-ways-of-distributing-six-identical-mathematics-books-and-six-identical-physics-books-among-three-students-such-that-each-student-gets-atleast-one-mathematics-book-and-atleast-one-physics

Question Number 21931 by Tinkutara last updated on 07/Oct/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{of}\:\mathrm{distributing}\:\mathrm{six} \\ $$$$\mathrm{identical}\:\mathrm{mathematics}\:\mathrm{books}\:\mathrm{and}\:\mathrm{six} \\ $$$$\mathrm{identical}\:\mathrm{physics}\:\mathrm{books}\:\mathrm{among}\:\mathrm{three} \\ $$$$\mathrm{students}\:\mathrm{such}\:\mathrm{that}\:\mathrm{each}\:\mathrm{student}\:\mathrm{gets} \\ $$$$\mathrm{atleast}\:\mathrm{one}\:\mathrm{mathematics}\:\mathrm{book}\:\mathrm{and} \\ $$$$\mathrm{atleast}\:\mathrm{one}\:\mathrm{physics}\:\mathrm{book}\:\mathrm{is}\:\frac{\mathrm{5}.\mathrm{5}!}{{k}},\:\mathrm{then}\:{k} \\ $$$$\mathrm{is} \\ $$ Commented…

There-are-8-Hindi-novels-and-6-English-novels-4-Hindi-novels-and-3-English-novels-are-selected-and-arranged-in-a-row-such-that-they-are-alternate-then-no-of-ways-is-

Question Number 21929 by Tinkutara last updated on 07/Oct/17 $$\mathrm{There}\:\mathrm{are}\:\mathrm{8}\:\mathrm{Hindi}\:\mathrm{novels}\:\mathrm{and}\:\mathrm{6}\:\mathrm{English} \\ $$$$\mathrm{novels}.\:\mathrm{4}\:\mathrm{Hindi}\:\mathrm{novels}\:\mathrm{and}\:\mathrm{3}\:\mathrm{English} \\ $$$$\mathrm{novels}\:\mathrm{are}\:\mathrm{selected}\:\mathrm{and}\:\mathrm{arranged}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{row}\:\mathrm{such}\:\mathrm{that}\:\mathrm{they}\:\mathrm{are}\:\mathrm{alternate}\:\mathrm{then} \\ $$$$\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}\:\mathrm{is} \\ $$ Commented by mrW1 last updated…

How-many-seven-letter-words-can-be-formed-by-using-the-letters-of-the-word-SUCCESS-so-that-neither-two-C-nor-two-S-are-together-

Question Number 21917 by Tinkutara last updated on 06/Oct/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{seven}\:\mathrm{letter}\:\mathrm{words}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{formed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word} \\ $$$$\mathrm{SUCCESS}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neither}\:\mathrm{two}\:\mathrm{C}\:\mathrm{nor} \\ $$$$\mathrm{two}\:\mathrm{S}\:\mathrm{are}\:\mathrm{together}? \\ $$ Commented by mrW1 last updated on 07/Oct/17…

Let-a-n-denote-the-number-of-all-n-digit-positive-integers-formed-by-the-digits-0-1-or-both-such-that-no-consecutive-digits-in-them-are-0-Let-b-n-the-number-of-such-n-digit-integers-ending-with-

Question Number 21913 by Tinkutara last updated on 06/Oct/17 $$\mathrm{Let}\:{a}_{{n}} \:\mathrm{denote}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{all}\:{n}-\mathrm{digit} \\ $$$$\mathrm{positive}\:\mathrm{integers}\:\mathrm{formed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{digits} \\ $$$$\mathrm{0},\:\mathrm{1}\:\mathrm{or}\:\mathrm{both}\:\mathrm{such}\:\mathrm{that}\:\mathrm{no}\:\mathrm{consecutive} \\ $$$$\mathrm{digits}\:\mathrm{in}\:\mathrm{them}\:\mathrm{are}\:\mathrm{0}.\:\mathrm{Let}\:{b}_{{n}} \:=\:\mathrm{the} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{such}\:{n}-\mathrm{digit}\:\mathrm{integers}\:\mathrm{ending} \\ $$$$\mathrm{with}\:\mathrm{digit}\:\mathrm{1}\:\mathrm{and}\:{c}_{{n}} \:=\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{such}\:{n}-\mathrm{digit}\:\mathrm{integers}\:\mathrm{ending}\:\mathrm{with}…

There-are-n-straight-lines-in-a-plane-no-two-of-which-are-parallel-and-no-three-pass-through-the-same-point-Their-point-of-intersection-are-joined-Then-the-number-of-fresh-lines-thus-obtained-is-

Question Number 21801 by Tinkutara last updated on 04/Oct/17 $$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane},\:\mathrm{no} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{which}\:\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{no}\:\mathrm{three} \\ $$$$\mathrm{pass}\:\mathrm{through}\:\mathrm{the}\:\mathrm{same}\:\mathrm{point}.\:\mathrm{Their} \\ $$$$\mathrm{point}\:\mathrm{of}\:\mathrm{intersection}\:\mathrm{are}\:\mathrm{joined}.\:\mathrm{Then} \\ $$$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{fresh}\:\mathrm{lines}\:\mathrm{thus}\:\mathrm{obtained} \\ $$$$\mathrm{is} \\ $$ Terms of Service…

Five-balls-are-to-be-placed-in-three-boxes-Each-can-hold-all-the-five-balls-In-how-many-different-ways-can-we-place-the-balls-so-that-no-box-remains-empty-if-balls-are-different-but-boxes-are-ident

Question Number 21802 by Tinkutara last updated on 04/Oct/17 $$\mathrm{Five}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{to}\:\mathrm{be}\:\mathrm{placed}\:\mathrm{in}\:\mathrm{three} \\ $$$$\mathrm{boxes}.\:\mathrm{Each}\:\mathrm{can}\:\mathrm{hold}\:\mathrm{all}\:\mathrm{the}\:\mathrm{five}\:\mathrm{balls}. \\ $$$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{we} \\ $$$$\mathrm{place}\:\mathrm{the}\:\mathrm{balls}\:\mathrm{so}\:\mathrm{that}\:\mathrm{no}\:\mathrm{box}\:\mathrm{remains} \\ $$$$\mathrm{empty},\:\mathrm{if}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{different}\:\mathrm{but}\:\mathrm{boxes} \\ $$$$\mathrm{are}\:\mathrm{identical}? \\ $$ Commented by mrW1…

There-are-n-white-and-n-red-balls-marked-1-2-3-n-The-number-of-ways-we-can-arrange-these-balls-in-a-row-so-that-neighbouring-balls-are-of-different-colours-is-

Question Number 21799 by Tinkutara last updated on 04/Oct/17 $$\mathrm{There}\:\mathrm{are}\:{n}\:\mathrm{white}\:\mathrm{and}\:{n}\:\mathrm{red}\:\mathrm{balls} \\ $$$$\mathrm{marked}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:….{n}.\:\mathrm{The}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{ways}\:\mathrm{we}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{these}\:\mathrm{balls}\:\mathrm{in}\:\mathrm{a} \\ $$$$\mathrm{row}\:\mathrm{so}\:\mathrm{that}\:\mathrm{neighbouring}\:\mathrm{balls}\:\mathrm{are}\:\mathrm{of} \\ $$$$\mathrm{different}\:\mathrm{colours}\:\mathrm{is} \\ $$ Commented by mrW1 last updated…

The-number-of-integers-which-lie-between-1-and-10-6-and-which-have-sum-of-digits-equal-to-12-is-

Question Number 21800 by Tinkutara last updated on 04/Oct/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{which}\:\mathrm{lie} \\ $$$$\mathrm{between}\:\mathrm{1}\:\mathrm{and}\:\mathrm{10}^{\mathrm{6}} \:\mathrm{and}\:\mathrm{which}\:\mathrm{have}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{digits}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{12}\:\mathrm{is} \\ $$ Commented by mrW1 last updated on 27/Dec/17 $$\mathrm{For}\:\mathrm{example}\:\mathrm{to}\:\mathrm{find}\:\mathrm{such}\:\mathrm{numbers}…