Menu Close

Category: Permutation and Combination

You-have-unlimited-number-of-1kg-5kg-10kg-and-25-kg-weights-In-how-many-ways-you-can-create-a-total-of-43kg-For-example-43-1-5-8-3-2-etc-

Question Number 3216 by prakash jain last updated on 07/Dec/15 $$\mathrm{You}\:\mathrm{have}\:\mathrm{unlimited}\:\mathrm{number}\:\mathrm{of}\:\mathrm{1kg},\:\mathrm{5kg} \\ $$$$\mathrm{10kg}\:\mathrm{and}\:\mathrm{25}\:\mathrm{kg}\:\mathrm{weights}.\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{create}\:\mathrm{a}\:\mathrm{total}\:\mathrm{of}\:\mathrm{43kg}. \\ $$$$\mathrm{For}\:\mathrm{example} \\ $$$$\mathrm{43}×\mathrm{1} \\ $$$$\mathrm{5}×\mathrm{8}+\mathrm{3}×\mathrm{2} \\ $$$$\mathrm{etc}. \\ $$…

in-how-many-ways-can-n-men-and-n-women-be-arranged-in-a-row-such-that-men-and-women-alternate-

Question Number 133995 by mr W last updated on 26/Feb/21 $${in}\:{how}\:{many}\:{ways}\:{can}\:{n}\:{men}\:{and} \\ $$$${n}\:{women}\:{be}\:{arranged}\:{in}\:{a}\:{row}\:{such} \\ $$$${that}\:{men}\:{and}\:{women}\:{alternate}? \\ $$ Commented by benjo_mathlover last updated on 26/Feb/21 $$=\:\mathrm{2}×\mathrm{n}!×\mathrm{n}!\:=\:\mathrm{2}×\left(\mathrm{n}!\right)^{\mathrm{2}}…

How-many-6-letter-words-in-which-at-least-one-letter-appears-more-than-once-can-be-made-from-the-letters-in-the-word-FLIGHT-

Question Number 133316 by bramlexs22 last updated on 21/Feb/21 $$\mathrm{How}\:\mathrm{many}\:\mathrm{6}−\mathrm{letter}\:\mathrm{words}\:\mathrm{in}\: \\ $$$$\mathrm{which}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{letter}\:\mathrm{appears} \\ $$$$\mathrm{more}\:\mathrm{than}\:\mathrm{once}\:,\mathrm{can}\:\mathrm{be}\:\mathrm{made}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{letters}\:\mathrm{in}\:\mathrm{the}\:\mathrm{word}\:\mathrm{FLIGHT} \\ $$$$ \\ $$ Commented by mr W last…

How-many-rearrangements-are-there-of-the-letters-in-the-world-i-ENGINEERING-ii-MATHEMATICAL-

Question Number 133314 by bramlexs22 last updated on 21/Feb/21 $$\mathrm{How}\:\mathrm{many}\:\mathrm{rearrangements}\:\mathrm{are}\: \\ $$$$\mathrm{there}\:\mathrm{of}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{in}\:\mathrm{the}\:\mathrm{world} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{ENGINEERING} \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{MATHEMATICAL}\: \\ $$ Answered by EDWIN88 last updated on 21/Feb/21…