Question Number 10117 by Gaurav3651 last updated on 25/Jan/17 $${A}\:{point}\:{is}\:{chosen}\:{at}\:{random}\:{inside} \\ $$$${a}\:{rectangle}\:{measuring}\:\mathrm{5}\:{inches} \\ $$$${by}\:\mathrm{6}\:{inches}.{What}\:{is}\:{the}\:{probability} \\ $$$${that}\:{the}\:{randomly}\:{selected}\:{point} \\ $$$${is}\:{at}\:{least}\:\mathrm{1}\:{inch}\:{from}\:{the}\:{edge}\:{of} \\ $$$${rectangle}? \\ $$ Commented by prakash…
Question Number 75538 by mhmd last updated on 12/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 75524 by mhmd last updated on 12/Dec/19 $${Suppose}\:{that}\:{X}\:{and}\:{Y}\:{have}\:{a}\:{discrete}\:{joint}\:{distribution}\:{for}\:{which}\:{the}\:{joint}\:{p}.{f}\:\:{is}\:{defined}\:{as}\:{follows}\: \\ $$$${f}\left({x},{y}\right)=\left\{\:{c}\mid{x}+{y}\mid\:{for}\:{x}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\:{and}\:{y}=−\mathrm{2},−\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{2}\right. \\ $$$$\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{other}\:{wise} \\ $$$${Determine}\:\left({a}\right)\:{the}\:{value}\:{of}\:{the}\:{constant}\:{of}\:{c} \\ $$$$\left({b}\right)\:{pr}\left({X}=\mathrm{0}\:{and}\:{Y}=−\mathrm{2}\right) \\ $$$$\left({e}\right)\:{pr}\left({X}=\mathrm{1}\right) \\ $$$$\left({d}\right)\:{pr}\left(\mid{x}−{y}\mid\leqslant\mathrm{1}\right) \\ $$$${pleas}\:{sir}\:{help}\:{me} \\…
Question Number 9818 by j.masanja06@gmail.com last updated on 05/Jan/17 Commented by sandy_suhendra last updated on 06/Jan/17 $$\mathrm{the}\:\mathrm{intervals}\:\mathrm{is}\:\mathrm{usually}\:\mathrm{not}\:\mathrm{overlapping} \\ $$$$\mathrm{such}\:\mathrm{as}\::\:\mathrm{1}−\mathrm{10},\:\mathrm{11}−\mathrm{20},\:\mathrm{21}−\mathrm{30}\:\mathrm{etc} \\ $$ Terms of Service Privacy…
Question Number 75325 by TawaTawa last updated on 09/Dec/19 Answered by MJS last updated on 10/Dec/19 $${z}_{{A}} =\frac{\mathrm{500}−\mathrm{524}.\mathrm{66}}{\mathrm{15}.\mathrm{01}}\approx−\mathrm{1}.\mathrm{643} \\ $$$${z}_{{B}} =\frac{\mathrm{500}−\mathrm{528}.\mathrm{21}}{\mathrm{15}.\mathrm{01}}\approx−\mathrm{1}.\mathrm{879} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}\pi}}\underset{{z}_{{A}} } {\overset{\infty}…
Question Number 75259 by rajesh4661kumar@gmail.com last updated on 09/Dec/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 9577 by j.masanja06@gmail.com last updated on 18/Dec/16 $$\mathrm{The}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{n}\:\mathrm{number}\:\mathrm{is}\:\mathrm{20}.\mathrm{if}\: \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{numbers}\:\mathrm{together}\:\mathrm{with}\:\mathrm{30} \\ $$$$\mathrm{give}\:\mathrm{a}\:\mathrm{new}\:\mathrm{mean}\:\mathrm{of}\:\mathrm{22}, \\ $$$$\mathrm{find}\:\mathrm{n}. \\ $$ Answered by ridwan balatif last updated on…
Question Number 140596 by nadovic last updated on 10/May/21 $$ \\ $$$$\mathrm{A}\:\mathrm{class}\:\mathrm{contains}\:\mathrm{20}\:\mathrm{students}\:\mathrm{of}\:\mathrm{whom}\:\mathrm{2} \\ $$$$\mathrm{are}\:\mathrm{men}\:\mathrm{and}\:\mathrm{8}\:\mathrm{are}\:\mathrm{women}.\:\mathrm{A}\:\mathrm{random} \\ $$$$\mathrm{sample}\:\mathrm{of}\:\mathrm{2}\:\mathrm{students}\:\mathrm{is}\:\mathrm{taken}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{class}\:\mathrm{without}\:\mathrm{replacement}.\:\left(\mathrm{random}\right. \\ $$$$\mathrm{imlies}\:\mathrm{that}\:\mathrm{each}\:\mathrm{student}\:\mathrm{has}\:\mathrm{an}\:\mathrm{equal} \\ $$$$\left.\mathrm{chance}\:\mathrm{of}\:\mathrm{appearing}\:\mathrm{in}\:\mathrm{the}\:\mathrm{sample}\right) \\ $$$$\left({a}\right)\:\mathrm{Use}\:\mathrm{a}\:\mathrm{diagram}\:\mathrm{to}\:\mathrm{illustrate}\:\mathrm{the}\:\mathrm{possible} \\…
Question Number 74860 by rajesh4661kumar@gmail.com last updated on 02/Dec/19 Answered by MJS last updated on 02/Dec/19 $$\mathrm{no}\:\mathrm{head} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{6}} =\frac{\mathrm{1}}{\mathrm{64}} \\ $$$$\mathrm{minimum}\:\mathrm{one}\:\mathrm{head} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{64}}=\frac{\mathrm{63}}{\mathrm{64}} \\…
Question Number 8973 by tekviah munandi last updated on 09/Nov/16 $${given}\:{that}\:{x}\:{and}\:{y}\:{are}\:{samples}\: \\ $$$${of}\:{random}\:{variable}\:{drawn}\:{from}\:{a}\: \\ $$$${population}\:{that}\:{is}\:{normally}\:{distributed} \\ $$$${find}\:{the}\:{joint}\:{distribution}\:{of}\:{x}\:{and}\:{y}.\: \\ $$$${if}\:{x}\:{and}\:{y}\:{are}\:{independent}\:{find}\:{the} \\ $$$${marginal}\:{distributions}. \\ $$ Terms of…