Question Number 31973 by abdo imad last updated on 17/Mar/18 $${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:\:/\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =−\mathrm{1}\:{and} \\ $$$${u}_{{n}+\mathrm{2}} =\:\mathrm{2}{u}_{{n}+\mathrm{1}\:} −{u}_{{n}} \:\:\:.{find}\:{the}\:{radius}\:{of}\:{convegence}\:{for} \\ $$$${this}\:{serie}. \\ $$ Terms of…
Question Number 31966 by abdo imad last updated on 17/Mar/18 $${let}\:{give}\:{I}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }\:{with}\:{n}\:{integr}\:{and}\:{n}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{convergence}\:{of}\:{I}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow\infty} \:\:{I}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}}…
Question Number 31965 by abdo imad last updated on 17/Mar/18 $${find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \:−\mathrm{2}^{{n}} }{{n}}\:{x}^{{n}} \:\:{with}\:\mid{x}\mid\:<\frac{\mathrm{1}}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 31964 by abdo imad last updated on 17/Mar/18 $$\left.\mathrm{1}\right){find}\:\:{S}_{{n}} \:\:=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:{C}_{{n}} ^{{k}} \:{sin}\left(\frac{{k}}{{n}}\right) \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$ Terms of Service Privacy Policy…
Question Number 31962 by abdo imad last updated on 17/Mar/18 $${let}\:{f}\left({x}\right)=\:\frac{{e}^{\mathrm{2}{x}} }{{x}+\mathrm{1}}\:\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{f}^{\left({n}\right)} \left({o}\right)\:\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{1}\right)\:. \\ $$ Terms of Service Privacy…
Question Number 97423 by mathmax by abdo last updated on 08/Jun/20 $$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{4y}\:=\mathrm{xe}^{−\mathrm{x}} \:\:\:\:\mathrm{with}\:\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=−\mathrm{1} \\ $$ Answered by Rio Michael last updated on 08/Jun/20…
Question Number 31812 by NECx last updated on 15/Mar/18 $${Find}\:{the}\:{equation}\:{of}\:{the}\:{line} \\ $$$${that}\:{is}\:{tangent}\:{to}\:{the}\:{curve}\:{y}={x}^{\mathrm{3}} \\ $$$${and}\:{is}\:{parallel}\:{to}\:{the}\:{line} \\ $$$$\mathrm{3}{x}−{y}+\mathrm{1}=\mathrm{0} \\ $$ Answered by mrW2 last updated on 15/Mar/18…
Question Number 31811 by NECx last updated on 15/Mar/18 $${find}\:{the}\:{domain}\:{of} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{7}}{\left[\mathrm{2}−{x}^{\mathrm{2}} \right]} \\ $$ Commented by Tinkutara last updated on 15/Mar/18 $${Domain}={R}−\left\{\left[−\sqrt{\mathrm{2}},−\mathrm{1}\right)\cup\left(\mathrm{1},\sqrt{\mathrm{2}}\right]\right\} \\ $$…
Question Number 31809 by NECx last updated on 15/Mar/18 $${Find}\:{the}\:{domain}\:{and}\:{range}\:{of} \\ $$$${f}\left({x}\right)=\frac{{x}−\mathrm{1}}{\left[{x}\right]} \\ $$ Commented by Tinkutara last updated on 16/Mar/18 $${Domain}={R}−\left[\mathrm{0},\mathrm{1}\right) \\ $$ Terms…
Question Number 31748 by abdo imad last updated on 13/Mar/18 $$\left.\mathrm{1}\right){find}\:{the}\:{value}\:{of}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{8}^{{n}} }{\left(\mathrm{3}{n}\right)!}\:\:. \\ $$ Commented by rahul 19…