Menu Close

Category: Relation and Functions

let-put-S-x-n-0-1-n-n-x-1-prove-that-S-is-C-1-on-0-2-give-the-variation-of-S-x-3-prove-that-x-gt-0-S-x-1-S-x-1-x-4-give-a-equivalent-for-S-at-0-5-find-a-equivalent-for-

Question Number 31533 by abdo imad last updated on 09/Mar/18 $${let}\:{put}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}+{x}} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:{S}\:{is}\:{C}^{\mathrm{1}} \:{on}\right]\mathrm{0}'+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right){give}\:{the}\:{variation}\:{of}\:{S}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){prove}\:{that}\:\forall{x}>\mathrm{0}\:{S}\left({x}+\mathrm{1}\right)+{S}\left({x}\right)=\frac{\mathrm{1}}{{x}} \\ $$$$\left.\mathrm{4}\right){give}\:{a}\:{equivalent}\:{for}\:{S}\:{at}\:\mathrm{0} \\ $$$$\left.\mathrm{5}\right){find}\:{a}\:{equivalent}\:{for}\:{S}\:{at}\:+\infty.…

1-find-lim-n-a-1-n-b-1-n-2-n-2-let-0-lt-lt-pi-2-calculate-lim-n-1-2-n-n-cos-n-sin-n-

Question Number 31526 by abdo imad last updated on 09/Mar/18 $$\left.\mathrm{1}\right){find}\:{lim}_{{n}\rightarrow\infty} \left(\:\frac{{a}^{\frac{\mathrm{1}}{{n}}} \:+{b}^{\frac{\mathrm{1}}{{n}}} }{\mathrm{2}}\right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}}\:{calculate}\:{lim}_{{n}\rightarrow\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\:^{{n}} \sqrt{{cos}\theta}\:+^{{n}} \sqrt{{sin}\theta}\:\right)^{{n}} \\ $$ Commented by abdo…

let-give-u-n-n-1-n-1-n-n-1-study-the-convergence-of-u-n-2-find-nature-of-serie-n-1-u-n-

Question Number 31523 by abdo imad last updated on 09/Mar/18 $${let}\:{give}\:{u}_{{n}} =^{{n}+\mathrm{1}} \sqrt{{n}+\mathrm{1}}\:\:−^{{n}} \sqrt{{n}}\: \\ $$$$\left.\mathrm{1}\right)\:{study}\:{the}\:{convergence}\:{of}\:\left({u}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{nature}\:{of}\:{serie}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} {u}_{{n}} \\ $$ Terms of…

let-L-n-x-e-x-e-x-x-n-n-1-prove-that-L-n-is-a-polynomial-2-find-degL-n-and-the-leading-coefficient-

Question Number 31500 by abdo imad last updated on 09/Mar/18 $${let}\:{L}_{{n}} \left({x}\right)=\:{e}^{{x}} \:\left({e}^{−{x}} \:{x}^{{n}} \right)^{\left({n}\right)} \: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{L}_{{n}} \:{is}\:{a}\:{polynomial} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{degL}_{{n}\:} {and}\:{the}\:{leading}\:{coefficient}\:. \\ $$ Commented…