Menu Close

Category: Relation and Functions

let-give-u-n-k-1-n-1-k-ln-n-1-prove-that-u-n-is-convergent-2-if-lim-n-u-n-prove-the-0-lt-lt-1-

Question Number 31417 by abdo imad last updated on 08/Mar/18 $${let}\:{give}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}\:−{ln}\left({n}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{u}_{{n}} \:{is}\:{convergent}\: \\ $$$$\left.\mathrm{2}\right)\:{if}\:\:\:\gamma={lim}_{{n}\rightarrow\infty} {u}_{{n}} \:\:{prove}\:{the}\:\mathrm{0}<\gamma<\mathrm{1}\:. \\ $$ Terms of…

a-n-is-a-sequence-wich-verify-a-n-1-a-n-1-n-1-n-calculate-n-0-a-n-x-n-

Question Number 96836 by mathmax by abdo last updated on 05/Jun/20 $$\mathrm{a}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{wich}\:\mathrm{verify}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:+\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:\forall\mathrm{n} \\ $$$$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{a}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}} \\ $$ Answered by Smail…

determine-f-continue-on-a-b-wich-verify-a-b-f-x-dx-2-a-b-f-2-x-dx-

Question Number 96837 by mathmax by abdo last updated on 05/Jun/20 $$\mathrm{determine}\:\mathrm{f}\:\mathrm{continue}\:\mathrm{on}\:\left[\mathrm{a},\mathrm{b}\right]\:\mathrm{wich}\:\mathrm{verify}\:\left(\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}\right)^{\mathrm{2}} \:=\int_{\mathrm{a}} ^{\mathrm{b}} \:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$ Answered by mathmax by abdo…

If-2f-x-f-x-1-x-2-determine-f-x-

Question Number 96826 by bobhans last updated on 05/Jun/20 $$\mathrm{If}\:\mathrm{2f}\left(\mathrm{x}\right)\:+\:\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)\:=\:\mathrm{x}^{\mathrm{2}} \:.\:\mathrm{determine}\:\mathrm{f}\left(\mathrm{x}\right)\: \\ $$ Answered by john santu last updated on 05/Jun/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:{px}^{\mathrm{2}} +{qx}+{r}\: \\ $$$$\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)=\:{px}^{\mathrm{2}}…

solve-y-y-sinx-x-

Question Number 96773 by abdomathmax last updated on 04/Jun/20 $$\mathrm{solve}\:\mathrm{y}^{''} −\mathrm{y}\:=\frac{\mathrm{sinx}}{\mathrm{x}} \\ $$ Answered by abdomathmax last updated on 05/Jun/20 $$\mathrm{let}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{laplace}\: \\ $$$$\left(\mathrm{e}\right)\Rightarrow\mathrm{L}\left(\mathrm{y}^{''} \right)−\mathrm{L}\left(\mathrm{y}\right)\:=\mathrm{L}\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)\:\Rightarrow \\…