Question Number 96211 by mathmax by abdo last updated on 30/May/20 $$\mathrm{solve}\:\mathrm{inside}\:\mathrm{C}\:\:\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{3}} \:+\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} \:+\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)+\mathrm{1}\:=\mathrm{0} \\ $$ Answered by mr W last updated on 30/May/20 $${let}\:{t}={x}−\frac{\mathrm{1}}{{x}}…
Question Number 96200 by mathmax by abdo last updated on 30/May/20 $$\mathrm{solve}\:\:\mathrm{y}^{''} \:+\mathrm{y}^{'} \:−\mathrm{2y}\:=\mathrm{xcosx}\:\:\mathrm{with}\:\mathrm{y}^{\left(\mathrm{2}\right)} \left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=−\mathrm{2} \\ $$ Answered by mathmax by abdo last updated…
Question Number 96196 by mathmax by abdo last updated on 30/May/20 $$\mathrm{let}\:\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{sinx}\right)\:\:\mathrm{developp}\:\mathrm{g}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by mathmax by abdo last updated on 31/May/20 $$\mathrm{g}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{sinx}\right)\:=\mathrm{ln}\left(\frac{\mathrm{e}^{\mathrm{ix}} −\mathrm{e}^{−\mathrm{ix}}…
Question Number 96194 by mathmax by abdo last updated on 30/May/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{ln}\left(\mathrm{cosx}\right)\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by john santu last updated on 30/May/20 $$\mathrm{ln}\left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{ln}\:\left(\frac{{e}^{{ix}} +{e}^{−{ix}} }{\mathrm{2}}\right)…
Question Number 30601 by abdo imad last updated on 23/Feb/18 $${for}\:\mathrm{0}<{r}\leqslant\mathrm{1}\:{and}\:\left(\theta,{x}\right)\in{R}^{\mathrm{2}} \:\:{find} \\ $$$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{r}^{{n}} {cos}\left({n}\theta\right). \\ $$ Commented by abdo imad last updated…
Question Number 30565 by abdo imad last updated on 23/Feb/18 $${let}\:{f}\left({x}\right)=\:\frac{\mathrm{1}}{{n}!}\left({px}−{qx}^{\mathrm{2}} \right)^{{n}} \:\:\:{find}\:{maxf}\:\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30563 by abdo imad last updated on 23/Feb/18 $${let}\:{f}\left({x}\right)=\mid{x}−\mathrm{2}\:\left[\frac{{x}+\mathrm{1}}{\mathrm{2}}\right]\mid \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\:{is}\:{periodic} \\ $$$$\left.\mathrm{2}\right)\:{simplify}\:{f}\left({x}\right)\:{if}\:{p}\leqslant{x}+\mathrm{1}\:{and}\:{p}\in{Z}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30560 by abdo imad last updated on 23/Feb/18 $${study}\:{the}\:{roots}\:{of}\:{f}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\:\frac{{x}^{{k}} }{{k}!}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 30556 by abdo imad last updated on 23/Feb/18 $${let}\:\:{S}_{{n}} \left({x}\right)=\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{{sin}\left({kx}\right)}{{k}^{\mathrm{2}} \left({k}+\mathrm{1}\right)}\:\:{find}\:{lim}_{{n}\rightarrow\infty} {S}_{{n}} \left({x}\right). \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 30551 by abdo imad last updated on 23/Feb/18 $$\:{find}\:\:{S}\:=\:\sum_{{n}\geqslant\mathrm{3}} \:\:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}−\mathrm{2}\right)\mathrm{2}^{{n}} }\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com