Question Number 30177 by abdo imad last updated on 17/Feb/18 $${let}\:{x}\in{R}\:\:{and}\:{u}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}} \:{cos}\left(\frac{{x}}{\mathrm{2}^{{k}} }\right)\:{find}\:{a}\:{simple}\:{form}\:{of} \\ $$$${u}_{{n}} . \\ $$ Answered by Tinkutara last updated…
Question Number 30173 by abdo imad last updated on 18/Feb/18 $${let}\:{u}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{1}.\:{verify}\:{that}\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\mathrm{2}.\:{prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{convergente}\:{and}\:{find}\:{its}\:{limit}. \\ $$ Commented by…
Question Number 30174 by abdo imad last updated on 18/Feb/18 $${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$\mathrm{1}.\:{prove}\:{that}\:{ln}\left({n}+\mathrm{1}\right)\leqslant{u}_{{n}} \leqslant{ln}\left({n}\right)\:+\mathrm{1} \\ $$$$\mathrm{2}.\:{show}\:{that}\:{u}_{{n}} \:\:_{{n}\rightarrow\infty} \sim\:{ln}\left({n}\right)\:\:. \\ $$ Terms of…
Question Number 95694 by mathmax by abdo last updated on 27/May/20 $$\mathrm{solve}\:\mathrm{by}\:\mathrm{laplace}\:\mathrm{transform}\:\:\mathrm{y}^{''} \:+\mathrm{3y}^{'} +\mathrm{2y}\:=\mathrm{e}^{−\mathrm{x}} \:\:\mathrm{withy}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{2} \\ $$ Answered by mathmax by abdo last updated…
Question Number 95693 by mathmax by abdo last updated on 27/May/20 $$\mathrm{solve}\:\mathrm{y}^{''} −\mathrm{2y}^{'} \:+\mathrm{1}\:=\left(\mathrm{x}−\mathrm{1}\right)\mathrm{shx} \\ $$ Answered by abdomathmax last updated on 29/May/20 $$\left(\mathrm{he}\right)\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{2r}\:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow\left(\mathrm{r}−\mathrm{1}\right)^{\mathrm{2}}…
Question Number 95695 by mathmax by abdo last updated on 27/May/20 $$\mathrm{solve}\:\left(\mathrm{x}+\mathrm{1}\right)\mathrm{y}^{'} −\mathrm{x}^{\mathrm{3}} \mathrm{y}\:=\:\mathrm{arctan}\left(\mathrm{2x}\right) \\ $$ Answered by mathmax by abdo last updated on 27/May/20…
Question Number 95662 by john santu last updated on 26/May/20 $$\mathrm{f}\left(\mathrm{x}+\mathrm{p}\right)\:+\:\mathrm{f}\left(\mathrm{x}−\mathrm{p}\right)\:=\:\mathrm{6x}−\mathrm{4} \\ $$$$\mathrm{f}\left(\mathrm{20}\right)\:=\:\mathrm{29p} \\ $$$$\frac{\mathrm{f}\left(\mathrm{p}\right)}{\mathrm{2p}}\:=\:? \\ $$ Commented by i jagooll last updated on 26/May/20…
Question Number 95634 by i jagooll last updated on 26/May/20 $$\mathrm{solve}\:\mid{x}+\frac{\mathrm{1}}{{x}}\mid\:>\:\mathrm{2}\: \\ $$ Answered by john santu last updated on 26/May/20 $$\mathrm{solution}:\: \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{to}\:\mid\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}\mid\:>\:\mathrm{2}…
Question Number 30049 by abdo imad last updated on 15/Feb/18 $${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{3}^{{n}} }\:. \\ $$ Commented by prof Abdo imad last updated on 16/Feb/18…
Question Number 161114 by cortano last updated on 12/Dec/21 $$\:\:{Let}\:{f}\left({x}\right)=\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{2}{x}\right)\:{for}\:−\frac{\pi}{\mathrm{4}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\:{then}\:{Df}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)=\frac{{a}}{{b}\sqrt{{b}}}\:{so}\:\begin{cases}{{a}=?}\\{{b}=?}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com