Menu Close

Category: Relation and Functions

let-u-n-k-1-n-1-k-n-2-1-verify-that-x-x-2-2-ln-1-x-x-2-prove-that-u-n-is-convergente-and-find-its-limit-

Question Number 30173 by abdo imad last updated on 18/Feb/18 $${let}\:{u}_{{n}} =\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}+\frac{{k}}{{n}^{\mathrm{2}} }\right) \\ $$$$\mathrm{1}.\:{verify}\:{that}\:{x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\leqslant{ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\mathrm{2}.\:{prove}\:{that}\:\left({u}_{{n}} \right)\:{is}\:{convergente}\:{and}\:{find}\:{its}\:{limit}. \\ $$ Commented by…

let-u-n-k-1-n-1-k-1-prove-that-ln-n-1-u-n-ln-n-1-2-show-that-u-n-n-ln-n-

Question Number 30174 by abdo imad last updated on 18/Feb/18 $${let}\:\:{u}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$\mathrm{1}.\:{prove}\:{that}\:{ln}\left({n}+\mathrm{1}\right)\leqslant{u}_{{n}} \leqslant{ln}\left({n}\right)\:+\mathrm{1} \\ $$$$\mathrm{2}.\:{show}\:{that}\:{u}_{{n}} \:\:_{{n}\rightarrow\infty} \sim\:{ln}\left({n}\right)\:\:. \\ $$ Terms of…

solve-by-laplace-transform-y-3y-2y-e-x-withy-0-1-and-y-0-2-

Question Number 95694 by mathmax by abdo last updated on 27/May/20 $$\mathrm{solve}\:\mathrm{by}\:\mathrm{laplace}\:\mathrm{transform}\:\:\mathrm{y}^{''} \:+\mathrm{3y}^{'} +\mathrm{2y}\:=\mathrm{e}^{−\mathrm{x}} \:\:\mathrm{withy}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)\:=\mathrm{2} \\ $$ Answered by mathmax by abdo last updated…

solve-y-2y-1-x-1-shx-

Question Number 95693 by mathmax by abdo last updated on 27/May/20 $$\mathrm{solve}\:\mathrm{y}^{''} −\mathrm{2y}^{'} \:+\mathrm{1}\:=\left(\mathrm{x}−\mathrm{1}\right)\mathrm{shx} \\ $$ Answered by abdomathmax last updated on 29/May/20 $$\left(\mathrm{he}\right)\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{2r}\:+\mathrm{1}\:=\mathrm{0}\:\Rightarrow\left(\mathrm{r}−\mathrm{1}\right)^{\mathrm{2}}…

Let-f-x-sin-3-2x-for-pi-4-x-pi-4-then-Df-1-1-8-a-b-b-so-a-b-

Question Number 161114 by cortano last updated on 12/Dec/21 $$\:\:{Let}\:{f}\left({x}\right)=\:\mathrm{sin}\:^{\mathrm{3}} \left(\mathrm{2}{x}\right)\:{for}\:−\frac{\pi}{\mathrm{4}}\leqslant{x}\leqslant\frac{\pi}{\mathrm{4}} \\ $$$$\:{then}\:{Df}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)=\frac{{a}}{{b}\sqrt{{b}}}\:{so}\:\begin{cases}{{a}=?}\\{{b}=?}\end{cases} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com