Menu Close

Category: Relation and Functions

Let-p-and-Q-be-points-on-the-curve-y-x-2-2x-while-x-2-and-x-2-h-respectively-Epress-the-gradient-of-PQ-in-terms-of-h-

Question Number 129052 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Let}\:\boldsymbol{\mathrm{p}}\:{and}\:\boldsymbol{\mathrm{Q}}\:{be}\:{points}\:{on}\:{the}\:{curve} \\ $$$$\boldsymbol{{y}}=\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{x}}\:{while}\:\boldsymbol{{x}}=\mathrm{2}\:{and}\:\boldsymbol{{x}}=\mathrm{2}+\boldsymbol{{h}} \\ $$$$\boldsymbol{{respectively}}.\:\boldsymbol{{E}}{press}\:{the}\:{gradient} \\ $$$${of}\:\boldsymbol{\mathrm{P}}{Q}\:{in}\:{terms}\:{of}\:\boldsymbol{{h}}. \\ $$ Commented by benjo_mathlover last updated on…

solve-y-2y-3y-xe-x-sin-2x-with-y-0-0-and-y-0-1-

Question Number 128951 by mathmax by abdo last updated on 11/Jan/21 $$\mathrm{solve}\:\mathrm{y}^{,,} −\mathrm{2y}^{'} \:+\mathrm{3y}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right)\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{0}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{1} \\ $$ Answered by mnjuly1970 last updated on 11/Jan/21…

let-S-n-k-1-n-1-k-k-and-H-n-k-1-n-1-k-calculate-S-n-interms-of-H-n-2-find-lim-n-S-n-

Question Number 63164 by mathmax by abdo last updated on 29/Jun/19 $${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\:\:\:\:\:\:{and}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${calculate}\:{S}_{{n}} \:{interms}\:{of}\:{H}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}}…

calculate-S-1-1-2-1-3-4-1-5-6-

Question Number 63101 by mathmax by abdo last updated on 29/Jun/19 $${calculate}\:\:{S}\:=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{3}×\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{5}×\mathrm{6}}\:+….. \\ $$ Commented by mathmax by abdo last updated on 29/Jun/19 $${let}\:{try}\:{another}\:{way}\:{we}\:{have}\:\frac{{d}}{{dx}}{ln}\left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\sum_{{n}=\mathrm{0}} ^{\infty}…

simplify-A-n-1-1-3-i-n-1-1-3-i-n-

Question Number 128498 by mathmax by abdo last updated on 07/Jan/21 $$\mathrm{simplify}\:\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{1}}{\left(\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}\right)^{\mathrm{n}} }+\frac{\mathrm{1}}{\left(\mathrm{1}−\sqrt{\mathrm{3}}\mathrm{i}\right)^{\mathrm{n}} } \\ $$ Answered by TheSupreme last updated on 08/Jan/21 $$\mathrm{1}+{i}\sqrt{\mathrm{3}}=\mathrm{2}{e}^{{i}\frac{\pi}{\mathrm{3}}}…

P-x-tan-1-x-n-0-1-n-x-2n-1-2n-1-P-1000-x-what-is-this-sum-in-terms-of-x-

Question Number 62962 by fyyac c last updated on 27/Jun/19 $${P}\left({x}\right)=\mathrm{tan}^{−\mathrm{1}} \left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}\: \\ $$$${P}_{\mathrm{1000}} \left({x}\right)=?\:{what}\:{is}\:{this}\:{sum}\:{in}\:{terms}\:{of}\:{x}? \\ $$ Terms of Service Privacy…