Question Number 29501 by abdo imad last updated on 09/Feb/18 $${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} \left({n}+\mathrm{2}\right)^{\mathrm{2}} }. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29503 by abdo imad last updated on 09/Feb/18 $${let}\:{U}_{{n},{p}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({n}+{k}\right)^{{p}+\mathrm{1}} }\:{with}\:{n},{p}\:{from}\:{N}^{\bigstar} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n},{p}} \:{for}\:{p}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{U}_{{n},\mathrm{1}} \:{is}\:{convergent} \\ $$$$\left.\mathrm{3}\right)\:{let}\:{V}_{{n}} =\:\sum_{{k}=\mathrm{1}}…
Question Number 29457 by prof Abdo imad last updated on 08/Feb/18 $${let}\:{give}\:{P}_{{n}} \left({x}\right)=\:\prod_{{k}=\mathrm{1}} ^{{n}} {ch}\left(\frac{{x}}{\mathrm{2}^{\left.{k}\right)} }\right)\: \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {P}_{{n}} \left({x}\right)\:. \\ $$ Terms of Service…
Question Number 29456 by prof Abdo imad last updated on 08/Feb/18 $${let}\:{give}\:{F}\left({x}\right)=\:\int_{{x}} ^{\mathrm{2}{x}} \:\:\:\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} +{t}^{\mathrm{4}} }}\: \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{dF}}{{dx}}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){find}\:{lim}_{{x}\rightarrow+\infty} {F}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\frac{{F}\left({x}\right)}{{x}}\:. \\ $$ Commented…
Question Number 29453 by prof Abdo imad last updated on 08/Feb/18 $${study}\:{and}\:{give}\:{the}\:{graph}\:{of}\:{the}\:{function} \\ $$$${f}\left({x}\right)=\:\:\:\:\frac{{x}}{\mathrm{1}+{e}^{−\frac{\mathrm{1}}{{x}}} }\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 29452 by prof Abdo imad last updated on 08/Feb/18 $${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\prod_{{k}=\mathrm{1}} ^{{n}} \:\:\left(\mathrm{1}\:+\frac{{k}}{{n}}\right)^{\frac{\mathrm{1}}{{n}}} \:\:. \\ $$ Commented by prof Abdo imad last updated…
Question Number 94945 by john santu last updated on 22/May/20 $$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{make}\:\mathrm{p}\:\mathrm{the}\:\mathrm{subject} \\ $$$$\mathrm{of}\:\mathrm{equation}\:{q}\:=\:\frac{{m}}{\:\sqrt{{p}}\:}\:+\:\frac{{p}^{\mathrm{2}} }{{m}}\: \\ $$ Commented by MJS last updated on 22/May/20 $${p}>\mathrm{0}\:\Leftrightarrow\:\sqrt{{p}}>\mathrm{0} \\…
Question Number 94904 by mathmax by abdo last updated on 21/May/20 $$\mathrm{solve}\:\mathrm{y}^{''} \:+\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\mathrm{xsin}\left(\mathrm{2x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94903 by mathmax by abdo last updated on 21/May/20 $$\mathrm{solve}\:\:\mathrm{y}^{''} \:+\mathrm{2y}^{'} \:+\mathrm{y}\:=\mathrm{xe}^{−\mathrm{x}} \\ $$ Answered by niroj last updated on 21/May/20 $$\:\mathrm{y}^{''} \:+\mathrm{2y}^{'}…
Question Number 29349 by abdo imad last updated on 07/Feb/18 $${let}\:{give}\:{f}\left({x}\right)=\:\left({x}^{{n}} −\mathrm{1}\right)\:{e}^{−{x}} \:\:{with}\:{n}\:{from}\:{N}^{\bigstar} \: \\ $$$${find}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right)\:. \\ $$ Commented by abdo imad last updated…