Menu Close

Category: Relation and Functions

solution-Q1-a-n-ln-m-m-0-ln0-5-ln-12-75-ln0-5-2-64-N-N-0-0-5-n-6-02-10-23-0-5-2-64-9-66-10-22-A-N-1-5-10-4-9-66-10-22-1-45-10-19-Bq-

Question Number 94756 by AshrafNejem last updated on 20/May/20 $$\left.{s}\left.{olution}:\:\mathrm{Q1}\right){a}\right)\:{n}=\frac{{ln}\left({m}/{m}_{\mathrm{0}} \right)}{{ln}\mathrm{0}.\mathrm{5}}\:=\:\frac{{ln}\left(\mathrm{12}/\mathrm{75}\right)}{{ln}\mathrm{0}.\mathrm{5}}\:=\mathrm{2}.\mathrm{64} \\ $$$${N}=\mathrm{N}_{\mathrm{0}} \left(\mathrm{0}.\mathrm{5}\right)^{{n}} \:=\:\mathrm{6}.\mathrm{02}×\mathrm{10}^{\mathrm{23}} \left(\mathrm{0}.\mathrm{5}\right)^{\mathrm{2}.\mathrm{64}} =\:\mathrm{9}.\mathrm{66}×\mathrm{10}^{\mathrm{22}} \\ $$$${A}=\lambda{N}=\mathrm{1}.\mathrm{5}×\mathrm{10}^{−\mathrm{4}} \:×\:\mathrm{9}.\mathrm{66}×\mathrm{10}^{\mathrm{22}} =\mathrm{1}.\mathrm{45}×\mathrm{10}^{\mathrm{19}} \:{Bq} \\ $$ Commented…

let-give-f-x-2-x-1-3x-find-f-1-x-and-f-1-x-

Question Number 29159 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{f}\left({x}\right)=\mathrm{2}\sqrt{{x}−\mathrm{1}}\:+\mathrm{3}{x}\:\:\:{find}\:{f}^{−\mathrm{1}} \left({x}\right)\:{and}\:\left({f}^{−\mathrm{1}} \right)^{'} \left({x}\right)\:. \\ $$ Commented by abdo imad last updated on 08/Feb/18 $${f}\left({x}\right)={y}\:\Leftrightarrow\:{x}={f}^{−\mathrm{1}}…

let-give-f-x-x-1-2-x-2-x-1-2-x-2-1-simlify-f-x-2-solve-inside-N-2-the-equation-f-x-y-

Question Number 29161 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{f}\left({x}\right)=\sqrt{{x}−\mathrm{1}+\mathrm{2}\sqrt{{x}−\mathrm{2}}}\:\:+\sqrt{{x}−\mathrm{1}−\mathrm{2}\sqrt{{x}−\mathrm{2}}} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{f}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{solve}\:{inside}\:\mathbb{N}^{\mathrm{2}} \:{the}\:{equation}\:{f}\left({x}\right)={y}. \\ $$ Commented by abdo imad last updated on…

find-lim-x-0-x-1-x-and-lim-x-0-x-2-1-x-is-the-greatest-integr-inferior-or-equal-to-

Question Number 29156 by abdo imad last updated on 04/Feb/18 $${find}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{x}\left[\frac{\mathrm{1}}{{x}}\right]\:\:{and}\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\:{x}^{\mathrm{2}} \:\left[\:\frac{\mathrm{1}}{{x}}\right]\:\:. \\ $$$$\left[\alpha\right]\:{is}\:{the}\:{greatest}\:{integr}\:{inferior}\:{or}\:{equal}\:{to}\:\alpha. \\ $$ Commented by abdo imad last…

let-give-the-sequence-u-n-u-0-1-and-u-1-2-and-n-N-2u-n-2-3-u-n-1-u-n-let-give-the-sequence-v-n-v-n-u-n-1-u-n-1-prove-that-v-n-is-geometric-find-v-n-in-terms-of-n-2

Question Number 29148 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{the}\:{sequence}\:\left({u}_{{n}} \right)\:/{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{\mathrm{1}} =\mathrm{2}\:{and} \\ $$$$\forall\:{n}\:\in{N}\:\:\:\mathrm{2}{u}_{{n}+\mathrm{2}} =\mathrm{3}\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} .\:{let}\:{give}\:{the}\:{sequence}\:\left({v}_{{n}} \right)\:/ \\ $$$${v}_{{n}} =\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:.…