Question Number 94650 by msup by abdo last updated on 20/May/20 $${let}\:{f}\left({x}\right)\:=\left({x}+\mathrm{1}\right)^{\mathrm{9}} \:{e}^{−\mathrm{3}{x}} \\ $$$${calculstr}\:{f}^{\left(\mathrm{7}\right)} \left(\mathrm{0}\right)\:{and}\:{f}^{\left(\mathrm{5}\right)} \left(\mathrm{1}\right) \\ $$ Commented by i jagooll last updated…
Question Number 29080 by abdo imad last updated on 04/Feb/18 $${let}\:{give}\:{a}>\mathrm{0}\:{study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:{a}^{{H}_{{n}} } \:\: \\ $$$${with}\:{H}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{{k}}. \\ $$ Answered by 9405200657…
Question Number 160136 by alcohol last updated on 25/Nov/21 $$\mathrm{1}+\mathrm{4}+\frac{\mathrm{16}}{\mathrm{2}}+\frac{\mathrm{64}}{\mathrm{6}}+…+\frac{\mathrm{4}^{{n}} }{{n}!}=? \\ $$ Answered by puissant last updated on 25/Nov/21 $${S}_{{n}} =\mathrm{1}+\mathrm{4}+\frac{\mathrm{16}}{\mathrm{2}}+\frac{\mathrm{64}}{\mathrm{6}}+….+\frac{\mathrm{4}^{{n}} }{{n}!}\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\mathrm{4}^{{k}}…
Question Number 29030 by abdo imad last updated on 03/Feb/18 $${find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\:\frac{{t}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28981 by abdo imad last updated on 02/Feb/18 $${find}\:{the}\:{values}\:{of}\:\prod_{{n}=\mathrm{2}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{2}}{{n}\left({n}+\mathrm{1}\right)}\right)\:. \\ $$ Commented by abdo imad last updated on 03/Feb/18 $$\prod_{{n}=\mathrm{2}} ^{\infty}…
Question Number 28977 by abdo imad last updated on 02/Feb/18 $${let}\:{give}\:{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:{a}_{{k}} ^{\mathrm{2}} \:\:\:\:\:{with}\:\left({a}_{{k}} \right)\:{sequence}\:{of}\:{reals}/{a}_{{k}>\mathrm{0}} \\ $$$${and}\:{v}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{a}_{{k}} }{{k}}\:.\:{prove}\:{that}\:{u}_{{n}} {converges}\Rightarrow\left({v}_{{n}} \right){converges}…
Question Number 28978 by abdo imad last updated on 02/Feb/18 $${let}\:{give}\:{p}\:{from}\:{R}\:{study}\:{the}\:{convergence}\:{of} \\ $$$$\prod_{{k}=\mathrm{1}} ^{\infty} \:\left(\mathrm{1}+{k}^{−{p}} \right)\:. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28858 by amit96 last updated on 31/Jan/18 Commented by abdo imad last updated on 31/Jan/18 $${we}\:{have}\:{f}\left({x}\right)={x}^{\mathrm{3}} +{x}\:{and}\:{g}\left({x}\right)={x}^{\mathrm{3}} −{x}\Rightarrow \\ $$$${f}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}\:{and}\:{g}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}}…
Question Number 94382 by frc2crc last updated on 18/May/20 $${a}_{{n}+\mathrm{1}} =\sqrt{{k}+\sqrt{{a}_{{n}} }}\:\:\:\:{a}_{\mathrm{0}} =\sqrt{{k}} \\ $$$${how}\:{do}\:{you}\:{solve}\:{for}\:{k}? \\ $$$${Only}\:{Equation}\:{please}\:{no}\:{value} \\ $$$${for}\:{k} \\ $$ Commented by prakash jain…
Question Number 94374 by Jidda28 last updated on 18/May/20 $$\mathrm{In}\:\mathrm{7yrs},\:\mathrm{Haidar}\:\mathrm{senior}\:\mathrm{Kani}\:\mathrm{with}\:\mathrm{3yrs}. \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{next}\:\mathrm{4yrs}\:\mathrm{Haidar}\:\mathrm{again}\:\mathrm{seniors}\:\mathrm{Kani} \\ $$$$\mathrm{with}\:\mathrm{2yrs}.\:\mathrm{How}\:\mathrm{old}\:\mathrm{is}\:\mathrm{Haidar}\:\mathrm{and}\:\mathrm{Kani}? \\ $$ Commented by Rasheed.Sindhi last updated on 18/May/20 $${If}\:\:{in}\:\mathrm{7}{yrs}\:{Haidar}\:{senior}\:{Kani} \\…