Question Number 94366 by i jagooll last updated on 18/May/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{if}\:\mathrm{f}\left({x}+\mathrm{1}\right)\:=\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${g}\left({x}\right)=\:\mathrm{2}{x}+\mathrm{7}\:\mathrm{and}\:{f}\left({g}^{−\mathrm{1}} \left({x}\right)\right)=\:\mathrm{3}\: \\ $$ Commented by mr W last updated on 18/May/20…
Question Number 94340 by mathmax by abdo last updated on 20/May/20 $$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx}\:\:\:\:\:\:\left(\mathrm{n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\:\Sigma\:\mathrm{U}_{\mathrm{n}} \mathrm{and}\:\Sigma\mathrm{nU}_{\mathrm{n}} \\ $$ Answered by abdomathmax last updated…
Question Number 94338 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{intergr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$ Answered by mathmax by abdo last updated on 18/May/20 $$\mathrm{fist}\:\mathrm{let}\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{n}\right)}…
Question Number 94336 by mathmax by abdo last updated on 19/May/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$ Answered by prakash jain last…
Question Number 94339 by mathmax by abdo last updated on 18/May/20 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{H}_{{n}} {x}^{{n}} \:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$ Terms of Service Privacy…
Question Number 94337 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$ Answered by Rio Michael last updated on 18/May/20 $$\mathrm{if}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{develope}\:\mathrm{a}\:\mathrm{series}\:\mathrm{then}: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:\equiv\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}…
Question Number 94335 by mathmax by abdo last updated on 18/May/20 $${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\left(−\mathrm{1}\right)^{{n}} } {x}^{{n}} \\ $$ Answered by mathmax by abdo last updated…
Question Number 94334 by mathmax by abdo last updated on 18/May/20 $${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$ Answered by abdomathmax…
Question Number 94332 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\left({arcsinx}\right)^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94333 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:\int_{−\infty} ^{{x}} \:\frac{{dt}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$ Answered by mathmax by abdo last updated…