Question Number 94338 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{intergr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)} \\ $$ Answered by mathmax by abdo last updated on 18/May/20 $$\mathrm{fist}\:\mathrm{let}\:\mathrm{find}\:\mathrm{f}^{\left(\mathrm{n}\right)}…
Question Number 94336 by mathmax by abdo last updated on 19/May/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$ Answered by prakash jain last…
Question Number 94339 by mathmax by abdo last updated on 18/May/20 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{H}_{{n}} {x}^{{n}} \:\:\:{with}\:{H}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}} \\ $$ Terms of Service Privacy…
Question Number 94337 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$ Answered by Rio Michael last updated on 18/May/20 $$\mathrm{if}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{develope}\:\mathrm{a}\:\mathrm{series}\:\mathrm{then}: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:\equiv\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}…
Question Number 94335 by mathmax by abdo last updated on 18/May/20 $${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{n}^{\left(−\mathrm{1}\right)^{{n}} } {x}^{{n}} \\ $$ Answered by mathmax by abdo last updated…
Question Number 94334 by mathmax by abdo last updated on 18/May/20 $${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$ Answered by abdomathmax…
Question Number 94332 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)=\left({arcsinx}\right)^{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94333 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:\int_{−\infty} ^{{x}} \:\frac{{dt}}{{t}^{\mathrm{4}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}} \\ $$ Answered by mathmax by abdo last updated…
Question Number 94331 by mathmax by abdo last updated on 18/May/20 $$\left.\mathrm{1}\right)\:{calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:\:{with}\:\mid{x}\mid<\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}…
Question Number 94318 by john santu last updated on 18/May/20 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{xy}\right)\:=\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\:\mathrm{and}\: \\ $$$$\mathrm{f}\left(\mathrm{7}\right)\:=\:\mathrm{7}.\:\mathrm{find}\:\mathrm{f}\left(\mathrm{1008}\right)\: \\ $$ Commented by Rasheed.Sindhi last updated on 18/May/20 $${f}\left(\mathrm{7}\right)={f}\left(\mathrm{7}×\mathrm{1}\right)={f}\left(\mathrm{7}+\mathrm{1}\right)=\mathrm{7} \\ $$$${f}\left(\mathrm{8}\right)=\mathrm{7}…