Menu Close

Category: Relation and Functions

what-is-the-value-of-x-if-f-x-1-x-2-1-g-x-2x-7-and-f-g-1-x-3-

Question Number 94366 by i jagooll last updated on 18/May/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}\:\mathrm{if}\:\mathrm{f}\left({x}+\mathrm{1}\right)\:=\:{x}^{\mathrm{2}} −\mathrm{1} \\ $$$${g}\left({x}\right)=\:\mathrm{2}{x}+\mathrm{7}\:\mathrm{and}\:{f}\left({g}^{−\mathrm{1}} \left({x}\right)\right)=\:\mathrm{3}\: \\ $$ Commented by mr W last updated on 18/May/20…

1-calculate-U-n-0-1-ln-x-ln-1-x-n-dx-n-gt-0-2-find-nature-of-U-n-and-nU-n-

Question Number 94340 by mathmax by abdo last updated on 20/May/20 $$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx}\:\:\:\:\:\:\left(\mathrm{n}>\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\:\Sigma\:\mathrm{U}_{\mathrm{n}} \mathrm{and}\:\Sigma\mathrm{nU}_{\mathrm{n}} \\ $$ Answered by abdomathmax last updated…

let-f-x-arctan-2x-e-3x-1-determine-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-

Question Number 94336 by mathmax by abdo last updated on 19/May/20 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{arctan}\left(\mathrm{2x}\right)\:\mathrm{e}^{−\mathrm{3x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{determine}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$ Answered by prakash jain last…

developp-at-integr-serie-f-x-1-x-1-x-2-

Question Number 94337 by mathmax by abdo last updated on 18/May/20 $${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$ Answered by Rio Michael last updated on 18/May/20 $$\mathrm{if}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{develope}\:\mathrm{a}\:\mathrm{series}\:\mathrm{then}: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:\equiv\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}}…

let-f-x-sinx-x-if-x-0-and-f-0-1-1-findf-n-x-and-f-n-0-2-developp-f-at-integr-serie-st-x-0-0-and-x-0-pi-2-

Question Number 94334 by mathmax by abdo last updated on 18/May/20 $${let}\:{f}\left({x}\right)\:=\frac{{sinx}}{{x}}{if}\:{x}\neq\mathrm{0}\:\:{and}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{findf}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie}\:{st}\:{x}_{\mathrm{0}} =\mathrm{0}\:{and}\:{x}_{\mathrm{0}} =\frac{\pi}{\mathrm{2}} \\ $$ Answered by abdomathmax…