Question Number 27081 by abdo imad last updated on 01/Jan/18 $${let}\:{give}\:{f}\left({x}\right)=\:\:\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}\:\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:\:. \\ $$ Answered by prakash jain last updated on 01/Jan/18 $${f}\left({x}\right)\frac{{x}}{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{2}{x}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{1}}\right)…
Question Number 92597 by john santu last updated on 08/May/20 $$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}}\: \\ $$$$\mathrm{find}\:\mathrm{domain}\:\mathrm{and}\:\mathrm{range}\:\mathrm{of}\: \\ $$$$\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:. \\ $$ Commented by jagoll last updated on 08/May/20 $$\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}−\mathrm{1}}}\:…
Question Number 27050 by Joel578 last updated on 01/Jan/18 Commented by Joel578 last updated on 01/Jan/18 $$\left({a}\:+\:{c}\right)^{\mathrm{2}} \:−\:\left({b}\:+\:{d}\right)^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:+\:\mathrm{2}{ac}\:−\:{b}^{\mathrm{2}} \:−\:{d}^{\mathrm{2}} \:−\:\mathrm{2}{bd} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\left({a}^{\mathrm{2}}…
Question Number 92424 by Jidda28 last updated on 06/May/20 $$\mathrm{If}\:\mathrm{2x}−\mathrm{0i}=\varrho^{\pi\mathrm{i}} \: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$ Commented by mathmax by abdo last updated on 06/May/20 $$\mathrm{2}{x}−{oi}\:={e}^{\pi{i}}…
Question Number 92301 by jagoll last updated on 06/May/20 $$\mathrm{given}\:\mathrm{eq}\:\mathrm{of}\:\mathrm{line}\: \\ $$$$\left(\mathrm{1}\right)\:\left[\:\mathrm{x},\mathrm{y}\:\right]\:=\:\left[\mathrm{3},−\mathrm{2}\right]\:+\:\mathrm{t}\:\left[\mathrm{4},−\mathrm{5}\right]\: \\ $$$$\left(\mathrm{2}\right)\:\left[\mathrm{x},\mathrm{y}\right]\:=\:\left[\mathrm{1},\mathrm{1}\right]\:+\:\mathrm{s}\:\left[\:\mathrm{7},\mathrm{k}\:\right]\: \\ $$$$\mathrm{find}\:\mathrm{t}\:\mathrm{and}\:\mathrm{s}\:\mathrm{if}\:\left(\mathrm{1}\right)\:\parallel\:\left(\mathrm{2}\right) \\ $$$$\mathrm{if}\:\left(\mathrm{1}\right)\:\bot\:\left(\mathrm{2}\right) \\ $$ Commented by jagoll last updated…
Question Number 92267 by mathmax by abdo last updated on 05/May/20 $${give}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}−{x}\right)}{\mathrm{1}+{x}}{dx}\:{at}\:{form}\:{of}\:{serie} \\ $$ Commented by mathmax by abdo last updated on 07/May/20…
Question Number 92197 by jagoll last updated on 05/May/20 $$\mathrm{Given}\:\mathrm{L}\left(\mathrm{n}\right)\:=\:\begin{cases}{\mathrm{0}\:,\:\mathrm{if}\:\mathrm{n}\:=\:\mathrm{1}}\\{\mathrm{L}\:\lfloor\frac{\mathrm{n}}{\mathrm{2}}\rfloor\:+\mathrm{1}\:,\:\mathrm{if}\:\mathrm{n}\:>\:\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{L}\left(\mathrm{25}\right)\: \\ $$ Commented by john santu last updated on 05/May/20 $$\mathrm{L}\left(\mathrm{25}\right)=\:\mathrm{L}\left(\mathrm{12}\right)+\mathrm{1} \\ $$$$=\:\left[\:\mathrm{L}\left(\mathrm{6}\right)\:+\:\mathrm{1}\:\right]\:+\mathrm{1}\:=\:\mathrm{L}\left(\mathrm{6}\right)\:+\mathrm{2}…
Question Number 26633 by jkssm1857@gmail.com last updated on 27/Dec/17 $$\mathrm{find}\:\mathrm{the}\:\mathrm{consumption}\:\mathrm{function}\:\mathrm{when}\:\mathrm{MPC}\:\mathrm{is}\:\mathrm{c}'\left(\mathrm{y}\right)=\mathrm{0}.\mathrm{8}+\mathrm{0}.\mathrm{1}\sqrt{\mathrm{y}\:} \\ $$$$\mathrm{and}\:\mathrm{that}\:\mathrm{C}=\mathrm{Y}\:\mathrm{when}\:\mathrm{Y}=\mathrm{100} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 26576 by gunawan last updated on 27/Dec/17 $$\mathrm{Find}\:\mathrm{all}\:{f}\::\:\mathrm{R}\rightarrow\mathrm{R}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({x}+{f}\left({x}\right)+{f}\left({y}\right)\right)={f}\left({y}+{f}\left({x}\right)\right)+{x}+{f}\left({y}\right)−{f}\left({f}\left({y}\right)\right)\: \\ $$$$\mathrm{for}\:\mathrm{all}\:{x},\:\mathrm{y}\:\in\:\mathrm{R} \\ $$ Commented by prakash jain last updated on 27/Dec/17 $${f}\left({x}+{f}\left({x}\right)+{f}\left({y}\right)\right)={f}\left({y}+{f}\left({x}\right)+{x}+{f}\left({y}\right)−{f}\left({f}\left({y}\right)\right)\right)?\:…
Question Number 26574 by abdo imad last updated on 26/Dec/17 $${study}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{2}} ^{\propto} \:\:\frac{{cosn}}{\:\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \\ $$ Commented by abdo imad last updated on 29/Dec/17 $${we}\:{have}\:\:\:\frac{\mathrm{1}}{\:\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}}…