Question Number 90972 by abdomathmax last updated on 27/Apr/20 $${solve}\:{y}^{''} \:+{y}\:=\frac{\mathrm{2}}{{sin}^{\mathrm{2}} {t}} \\ $$ Answered by Joel578 last updated on 27/Apr/20 $$\bullet\:\mathrm{Homogeneous}\:\mathrm{solution} \\ $$$$\mathrm{with}\:\mathrm{char}.\:\mathrm{eq}.\:\lambda^{\mathrm{2}} \:+\:\mathrm{1}\:=\:\mathrm{0}\:\rightarrow\:\lambda_{\mathrm{1},\mathrm{2}}…
Question Number 90971 by abdomathmax last updated on 27/Apr/20 $${solve}\:{y}^{''} \:+{y}^{'} \:+{y}\:=\frac{{e}^{−{t}} }{{ch}^{\mathrm{2}} {t}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90970 by abdomathmax last updated on 27/Apr/20 $${find}\:{all}\:{functions}\:{f}\:\:\left(\mathrm{2}×{derivable}\right)\:{verify} \\ $$$$\left({f}^{'} \left({x}\right)\right)^{\mathrm{2}} \:−\left({f}\left({x}\right)\right)^{\mathrm{2}} \:=\mathrm{1}\:{and}\:{f}^{'} \left(\mathrm{0}\right)=\mathrm{1} \\ $$ Commented by mr W last updated on…
Question Number 90969 by abdomathmax last updated on 27/Apr/20 $${solve}\:{y}^{''} −\mathrm{2}{ay}^{'} \:+\left(\mathrm{1}+{a}^{\mathrm{2}} \right){y}\:={x}\:+{e}^{{ax}} \\ $$$${a}\:{real} \\ $$ Commented by niroj last updated on 27/Apr/20 $$\:\mathrm{y}^{''}…
Question Number 90968 by abdomathmax last updated on 27/Apr/20 $${solve}\:\left(\mathrm{1}+{e}^{{x}} \right){y}^{'} −{y}\:=\frac{{e}^{{x}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ Commented by niroj last updated on 27/Apr/20 $$\:\:\:\:\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{y}^{'}…
Question Number 90966 by abdomathmax last updated on 27/Apr/20 $${solve}\:\:{y}^{''} \:+\mathrm{3}{y}^{'} +\mathrm{2}\:={t}−{e}^{−{t}} \:+{sint} \\ $$ Commented by jagoll last updated on 27/Apr/20 $${y}''+\mathrm{3}{y}'+\mathrm{2}{y}={t}−{e}^{−{t}} +\mathrm{sin}\:{t}? \\…
Question Number 90964 by abdomathmax last updated on 27/Apr/20 $${determine}\:{a}\:{diff}.{equation}\:{with}\:{roots}\:{e}^{\mathrm{2}{x}} \:{and}\:{e}^{−{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90967 by abdomathmax last updated on 27/Apr/20 $${solve}\:{y}^{''} \:+{y}'\:+{y}\:={xsinx}\:{e}^{−\mathrm{2}{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90963 by abdomathmax last updated on 27/Apr/20 $${solve}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:=\sqrt{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$ Commented by niroj last updated on 27/Apr/20 $$\:\:\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}^{'} \:+\mathrm{xy}\:=\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}}…
Question Number 90965 by abdomathmax last updated on 27/Apr/20 $${solve}\:{the}\:\left({de}\right)\:\:{ch}\left({x}\right){y}^{'} \:+{sh}\left({x}\right){y}\:={xe}^{−{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com