Menu Close

Category: Relation and Functions

Given-t-x-ax-4-bx-2-x-5-where-a-and-b-are-constant-If-t-4-3-then-t-4-

Question Number 128176 by liberty last updated on 05/Jan/21 $$\mathrm{Given}\:\mathrm{t}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{x}+\mathrm{5}\:;\:\mathrm{where}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b} \\ $$$$\mathrm{are}\:\mathrm{constant}.\:\mathrm{If}\:\mathrm{t}\left(−\mathrm{4}\right)=\mathrm{3}\:\mathrm{then}\:\mathrm{t}\left(\mathrm{4}\right)=? \\ $$ Answered by bemath last updated on 05/Jan/21 $$\left(\Rightarrow\right)\:\mathrm{t}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}}…

let-h-x-arctan-x-1-x-1-calculate-h-n-x-and-h-n-1-2-developp-f-x-at-integr-serie-at-x-0-1-

Question Number 62440 by mathsolverby Abdo last updated on 21/Jun/19 $${let}\:{h}\left({x}\right)=\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{h}^{\left({n}\right)} \left({x}\right)\:{and}\:{h}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\left({x}\right){at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\mathrm{1} \\ $$ Commented by mathmax by abdo…

let-f-x-ch-cosx-1-calculste-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-

Question Number 62434 by mathsolverby Abdo last updated on 21/Jun/19 $${let}\:{f}\left({x}\right)={ch}\left({cosx}\right) \\ $$$$\left.\mathrm{1}\right){calculste}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact:…

Question-62340

Question Number 62340 by Tawa1 last updated on 19/Jun/19 Commented by maxmathsup by imad last updated on 20/Jun/19 $$\left.\mathrm{3}\right)\:{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}\:\Rightarrow{f}\left(−{x}\right)−{xf}\left({x}\right)\:=−{x}\:\:\:{we}\:{get}\:{the}\:{systeme} \\ $$$$\begin{cases}{{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}}\\{{xf}\left({x}\right)−{f}\left(−{x}\right)={x}\:\:\:\:\:\:\:\left({with}\:{unknown}\:{f}\left({x}\right)\:{and}\:{f}\left(−{x}\right)\right)}\end{cases} \\ $$$$\Delta\:=\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−\mathrm{1}−{x}^{\mathrm{2}} \\ $$$${f}\left({x}\right)\:=\frac{\Delta_{{f}\left({x}\right)}…