Question Number 62777 by James Bryan Botshabelo last updated on 25/Jun/19 $$\mathrm{5}^{\mathrm{3}{x}−\mathrm{1}} .\mathrm{4}^{\mathrm{2}{x}−\mathrm{2}} =\mathrm{625} \\ $$ Commented by kaivan.ahmadi last updated on 25/Jun/19 $$\mathrm{5}^{\mathrm{2}{x}−\mathrm{1}} .\mathrm{5}^{{x}}…
Question Number 128176 by liberty last updated on 05/Jan/21 $$\mathrm{Given}\:\mathrm{t}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{x}+\mathrm{5}\:;\:\mathrm{where}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b} \\ $$$$\mathrm{are}\:\mathrm{constant}.\:\mathrm{If}\:\mathrm{t}\left(−\mathrm{4}\right)=\mathrm{3}\:\mathrm{then}\:\mathrm{t}\left(\mathrm{4}\right)=? \\ $$ Answered by bemath last updated on 05/Jan/21 $$\left(\Rightarrow\right)\:\mathrm{t}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}}…
Question Number 128035 by rs4089 last updated on 03/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 62440 by mathsolverby Abdo last updated on 21/Jun/19 $${let}\:{h}\left({x}\right)=\:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\left.\mathrm{1}\right){calculate}\:{h}^{\left({n}\right)} \left({x}\right)\:{and}\:{h}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\left({x}\right){at}\:{integr}\:{serie}\:{at}\:{x}_{\mathrm{0}} =\mathrm{1} \\ $$ Commented by mathmax by abdo…
Question Number 62435 by mathsolverby Abdo last updated on 21/Jun/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{\left(\mathrm{1}+{x}\right)^{{sinx}} −\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$ Commented by Smail last updated on 22/Jun/19 $$\left(\mathrm{1}+{x}\right)^{{sinx}} ={e}^{{ln}\left(\left(\mathrm{1}+{x}\right)^{{sinx}}…
Question Number 62434 by mathsolverby Abdo last updated on 21/Jun/19 $${let}\:{f}\left({x}\right)={ch}\left({cosx}\right) \\ $$$$\left.\mathrm{1}\right){calculste}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 127971 by m8146 last updated on 03/Jan/21 $$\int \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 62340 by Tawa1 last updated on 19/Jun/19 Commented by maxmathsup by imad last updated on 20/Jun/19 $$\left.\mathrm{3}\right)\:{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}\:\Rightarrow{f}\left(−{x}\right)−{xf}\left({x}\right)\:=−{x}\:\:\:{we}\:{get}\:{the}\:{systeme} \\ $$$$\begin{cases}{{f}\left({x}\right)+{xf}\left(−{x}\right)\:={x}}\\{{xf}\left({x}\right)−{f}\left(−{x}\right)={x}\:\:\:\:\:\:\:\left({with}\:{unknown}\:{f}\left({x}\right)\:{and}\:{f}\left(−{x}\right)\right)}\end{cases} \\ $$$$\Delta\:=\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:{x}}\\{{x}\:\:\:\:\:\:\:\:\:−\mathrm{1}}\end{vmatrix}=−\mathrm{1}−{x}^{\mathrm{2}} \\ $$$${f}\left({x}\right)\:=\frac{\Delta_{{f}\left({x}\right)}…
Question Number 127778 by Bird last updated on 02/Jan/21 $${study}\:{tbe}\:{convergence}\:{of} \\ $$$$\sum_{{n}} ^{\infty} \frac{\mathrm{1}}{{nln}\left(\mathrm{1}+{n}\right)} \\ $$ Answered by mnjuly1970 last updated on 02/Jan/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty}…
Question Number 127773 by Bird last updated on 02/Jan/21 $${find}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\:\int_{{x}} ^{{x}^{\mathrm{2}} } \:\frac{{sh}\left({xt}\right)}{{t}+{x}}{dt} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com