Question Number 17895 by ajfour last updated on 12/Jul/17 Commented by ajfour last updated on 12/Jul/17 $$\mathrm{solution}\:\mathrm{to}\:\mathrm{Q}.\mathrm{17872}\: \\ $$$$\mathrm{which}\:\mathrm{said}:\:\:\mathrm{Solve} \\ $$$$\:\mid\mathrm{x}−\mathrm{1}\mid+\mid\mathrm{x}\mid+\mid\mathrm{x}+\mathrm{1}\mid=\mathrm{x}+\mathrm{2} \\ $$ Commented by…
Question Number 83420 by jagoll last updated on 02/Mar/20 $$\mathrm{find}\:\mathrm{range}\:\mathrm{x}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{x}−\mathrm{4}\sqrt{\mathrm{y}}\:=\:\mathrm{2}\sqrt{\mathrm{x}−\mathrm{y}} \\ $$ Commented by mathmax by abdo last updated on 02/Mar/20 $${we}\:{have}\:\mathrm{0}\leqslant{y}\leqslant{x}\:\:\:\left({e}\right)\Rightarrow\left({x}−\mathrm{4}\sqrt{{y}}\right)^{\mathrm{2}} =\mathrm{4}\left({x}−{y}\right)\:\Rightarrow…
Question Number 17872 by Tinkutara last updated on 11/Jul/17 $$\mathrm{Solve}\:: \\ $$$$\mid{x}\:−\:\mathrm{1}\mid\:+\:\mid{x}\mid\:+\:\mid{x}\:+\:\mathrm{1}\mid\:=\:{x}\:+\:\mathrm{2} \\ $$ Answered by ajfour last updated on 11/Jul/17 $$\:\:\:\mathrm{x}\in\left[\mathrm{0},\:\mathrm{1}\right] \\ $$ Answered…
Question Number 83406 by jagoll last updated on 02/Mar/20 $$\mathrm{If}\:\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +…+\mathrm{u}_{\mathrm{n}} \:=\:\mathrm{2n}^{\mathrm{2}} +\mathrm{n}\: \\ $$$$\mathrm{is}\:\mathrm{a}\:\:\mathrm{AP}.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{u}_{\mathrm{1}} +\mathrm{u}_{\mathrm{2}} +\mathrm{u}_{\mathrm{3}} +…+\mathrm{u}_{\mathrm{2n}−\mathrm{2}} +\mathrm{u}_{\mathrm{2n}−\mathrm{1}} \:. \\…
Question Number 83403 by jagoll last updated on 02/Mar/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\:\mathrm{function}\: \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$ Answered by MJS last updated on 02/Mar/20 $${y}=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{defined}\:\mathrm{for}\:{x}\neq\mathrm{1} \\…
Question Number 83395 by Rio Michael last updated on 01/Mar/20 $$\mathrm{Let}\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{relation}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{R}\:=\:\left\{\mathrm{3},\mathrm{6},\mathrm{12},\mathrm{24}\right\} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{R}\:\mathrm{is}\:\mathrm{a}\:\mathrm{strict}\:\mathrm{order} \\ $$$$\mathrm{relation}.\: \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 148812 by mathmax by abdo last updated on 31/Jul/21 $$\mathrm{find}\:\int\:\:\frac{\mathrm{dx}}{\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{x}+\mathrm{1}}\right)\left(\sqrt{\mathrm{x}−\mathrm{1}}+\sqrt{\mathrm{x}}\right)} \\ $$ Answered by MJS_new last updated on 31/Jul/21 $$\int\frac{{dx}}{\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right)\left(\sqrt{{x}}+\sqrt{{x}−\mathrm{1}}\right)}= \\ $$$$=\int\left(\frac{\mathrm{1}}{\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right)\left(\sqrt{{x}}+\sqrt{{x}−\mathrm{1}}\right)}×\frac{\left(\sqrt{{x}}−\sqrt{{x}+\mathrm{1}}\right)\left(\sqrt{{x}}−\sqrt{{x}−\mathrm{1}}\right)}{\left(\sqrt{{x}}−\sqrt{{x}+\mathrm{1}}\right)\left(\sqrt{{x}}−\sqrt{{x}−\mathrm{1}}\right)}\right){dx}= \\…
Question Number 83255 by mathmax by abdo last updated on 29/Feb/20 $${let}\:{g}\left({x}\right)={ln}\left(\mathrm{2}−{cosx}\right) \\ $$$${devlopp}\:{g}\:{at}\:{integr}\:{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 83254 by mathmax by abdo last updated on 29/Feb/20 $${let}\:{f}\left({x}\right)={arctan}\left(\mathrm{2}{x}−\frac{\mathrm{1}}{{x}}\right) \\ $$$${find}\:{f}^{\left({n}\right)} \left({x}\right)\:{andf}^{\left({n}\right)} \left(\mathrm{1}\right) \\ $$ Commented by mathmax by abdo last updated…
Question Number 83245 by mathmax by abdo last updated on 29/Feb/20 $${let}\:{f}\left({x}\right)\:={e}^{−\mathrm{2}{x}} {ln}\left(\mathrm{1}+\mathrm{2}{x}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Commented by mathmax by…