Question Number 82476 by abdomathmax last updated on 21/Feb/20 $${solve}\:\:{xy}^{''} \:+\mathrm{2}{y}^{'} \:+{xy}=\mathrm{0}\:{with}\:{initial}\:{conditions} \\ $$$${y}\left({o}\right)=\mathrm{1}\:{and}\:{y}^{'} \left(\mathrm{1}\right)=\mathrm{0} \\ $$ Answered by mind is power last updated on…
Question Number 82452 by mathmax by abdo last updated on 21/Feb/20 $${nature}\:{ofthe}\:{serie}\:\sum_{{n}=\mathrm{0}} ^{\infty} {ln}\left({cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\right) \\ $$ Commented by mathmax by abdo last updated on…
Question Number 82447 by mathmax by abdo last updated on 21/Feb/20 $${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\xi\left({n}\right) \\ $$ Answered by mind is power last updated on…
Question Number 82445 by mathmax by abdo last updated on 21/Feb/20 $${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\xi\left({n}\right)−\mathrm{1}}{{n}} \\ $$$${with}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\left({x}>\mathrm{1}\right) \\ $$ Answered by mind is…
Question Number 147972 by mathmax by abdo last updated on 24/Jul/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147971 by mathmax by abdo last updated on 24/Jul/21 $$\mathrm{find}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{3}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$ Commented by tabata last updated on…
Question Number 147861 by mathmax by abdo last updated on 24/Jul/21 $$\mathrm{resoudre}\:\mathrm{dans}\:\mathrm{Z}^{\mathrm{2}} \:\:\:\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \:=\mathrm{3x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147863 by mathmax by abdo last updated on 24/Jul/21 $$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{n}!^{\mathrm{2}} }{\left(\mathrm{2n}\right)!} \\ $$$$ \\ $$ Answered by qaz last updated on…
Question Number 82288 by mathmax by abdo last updated on 19/Feb/20 $${calculate}\:{lim}_{{n}\rightarrow+\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}^{\mathrm{2}} } \frac{{n}!}{{n}^{{n}+\frac{\mathrm{1}}{\mathrm{2}}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 82290 by mathmax by abdo last updated on 20/Feb/20 $${calculate}\:\sum_{{p}\geqslant\mathrm{2}\:{and}\:{q}\geqslant\mathrm{2}} \:\:\frac{\mathrm{1}}{{p}^{{q}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com