Question Number 16457 by Tinkutara last updated on 22/Jun/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}\:−\:{x}^{\mathrm{2}} } \\ $$ Answered by sandy_suhendra last updated on 22/Jun/17 $$\mathrm{y}\:=\:\frac{\mathrm{3}}{\mathrm{2}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{y}\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)=\mathrm{3}…
Question Number 147469 by rexford last updated on 21/Jul/21 Commented by rexford last updated on 21/Jul/21 $${please},{help}\:{me}\:{out} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 147466 by mathmax by abdo last updated on 21/Jul/21 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{5} \\ $$$$\mathrm{find}\:\int\:\frac{\mathrm{f}\left(\mathrm{x}\right)}{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}\mathrm{dx}\:\:\:\mathrm{and}\:\int\:\:\frac{\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{f}\left(\mathrm{x}\right)}\mathrm{dx} \\ $$ Answered by EDWIN88 last updated on…
Question Number 147467 by mathmax by abdo last updated on 21/Jul/21 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{x}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)\:\mathrm{and}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx} \\ $$…
Question Number 147302 by puissant last updated on 19/Jul/21 $${P}_{{a}} \left({z}\right)={z}^{\mathrm{2}{n}} −\mathrm{2}{z}^{{n}} {cosa}+\mathrm{1} \\ $$$${montrer}\:{que}\:\:{p}_{{a}} \left(\mathrm{z}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}^{\mathrm{2}} −\mathrm{2}{zcos}\left(\frac{{a}}{\pi}+\frac{\mathrm{2}{k}\pi}{{n}}\right)+\mathrm{1}\right) \\ $$ Answered by mathmax by…
Question Number 147258 by alcohol last updated on 19/Jul/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81720 by mathmax by abdo last updated on 14/Feb/20 $${let}\:{f}\left({x}\right)={arctan}\left(\mathrm{1}+{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developpf}\:{at}\:{integr}\:{serie} \\ $$ Commented by mathmax by…
Question Number 147218 by mathmax by abdo last updated on 19/Jul/21 $$\mathrm{calculate}\:\int_{\mid\mathrm{z}−\mathrm{1}\mid=\mathrm{2}} \:\:\:\:\frac{\mathrm{e}^{\mathrm{z}} }{\left(\mathrm{z}+\mathrm{i}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \left(\mathrm{z}+\mathrm{i}\right)^{\mathrm{2}} \left(\mathrm{2z}−\mathrm{1}\right)}\mathrm{dz} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147205 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{calculate}\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{arctan}\left(\frac{\mathrm{3}}{\mathrm{x}}\right)}{\mathrm{2x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 147204 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{lnxln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com