Question Number 147201 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cos}\left(\mathrm{sinx}\right)\:\:\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 16086 by Tinkutara last updated on 17/Jun/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation}\:\mid{x}\:+\:\mathrm{4}\mid\:=\:\mathrm{8}\left[{x}\right] \\ $$$$+\:{x}\:−\:\mathrm{4}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:\mathrm{Greatest}\:\mathrm{Integer}\right. \\ $$$$\left.\mathrm{Function}\right) \\ $$ Commented by prakash jain last updated on…
Question Number 16087 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Number}\:\mathrm{of}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\mathrm{2}\left[−{x}\right]\:+\:\mathrm{3}{x}\:=\:\mathrm{7}\left\{{x}\right\}\:\mathrm{is}?\:\left(\mathrm{where}\:\left[\centerdot\right]\:=\right. \\ $$$$\mathrm{Greatest}\:\mathrm{Integer}\:\mathrm{Function}\:\&\:\left\{\centerdot\right\} \\ $$$$\left.\mathrm{fractional}\:\mathrm{function}.\right) \\ $$ Commented by prakash jain last updated on…
Question Number 16082 by Tinkutara last updated on 17/Jun/17 $$\mathrm{Solution}\:\mathrm{of}\:\mathrm{equation}\:\mathrm{2}\left[{x}\right]\:+\:\mathrm{4}\left\{{x}\right\}\:=\:\mathrm{3}{x} \\ $$$$+\:\mathrm{2}\:\left(\mathrm{where}\:\left\{\centerdot\right\}\:\mathrm{denotes}\:\mathrm{fractional}\right. \\ $$$$\left.\mathrm{function}\:\mathrm{and}\:\left[\centerdot\right]\:\mathrm{denotes}\:\mathrm{G}.\mathrm{I}.\mathrm{F}\right)\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\left\{−\mathrm{2}\right\} \\ $$$$\left(\mathrm{2}\right)\:\left\{−\mathrm{2},\:−\:\frac{\mathrm{3}}{\mathrm{2}}\right\} \\ $$$$\left(\mathrm{3}\right)\:\phi \\ $$$$\left(\mathrm{4}\right)\:{R} \\ $$ Commented…
Question Number 16085 by Tinkutara last updated on 18/Jun/17 $$\mathrm{Let}\:{f}\left(\mathrm{sin}\:{x}\right)\:+\:\mathrm{2}{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{3}\:\forall\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right). \\ $$$$\mathrm{Then} \\ $$$$\left(\mathrm{1}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right) \\ $$$$\left(\mathrm{2}\right)\:{f}\left(\mathrm{sin}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(−\mathrm{1},\:\mathrm{0}\right) \\ $$$$\left(\mathrm{3}\right)\:{f}\left(\mathrm{cos}\:{x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:{f}\left({x}\right)\:=\:\mathrm{1},\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{1}\right) \\ $$ Commented by prakash…
Question Number 147100 by mathmax by abdo last updated on 18/Jul/21 $$\mathrm{findA}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{2}\right)….\left(\mathrm{x}+\mathrm{n}\right)\mathrm{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 147006 by mathmax by abdo last updated on 17/Jul/21 $$\mathrm{find}\:\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{2}\right)……\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{n}\right)} \\ $$ Answered by mindispower last updated…
Question Number 81434 by abdomathmax last updated on 13/Feb/20 $${find}\:{U}_{{n}} \:=\int_{\mathrm{1}} ^{{n}} \:{arctan}\left({x}+\frac{\mathrm{1}}{{x}}\right){dx} \\ $$$${and}\:{determine}\:{nature}\:{of}\:\Sigma\:{U}_{{n}} \\ $$ Commented by abdomathmax last updated on 13/Feb/20 $${by}\:{parts}\:{U}_{{n}}…
Question Number 81430 by abdomathmax last updated on 13/Feb/20 $${let}\:{the}\:{matrix}\:{A}=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\mathrm{3}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:{and}\:{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right){find}\:{cosA}\:{and}\:{sinA} \\ $$ Commented by abdomathmax last updated on…
Question Number 81431 by abdomathmax last updated on 13/Feb/20 $${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Commented by abdomathmax last updated on 20/Feb/20…