Question Number 81429 by abdomathmax last updated on 13/Feb/20 $${calculate}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{sin}\left({shx}\right)−{sh}\left({sinx}\right)}{{x}^{\mathrm{2}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81428 by abdomathmax last updated on 13/Feb/20 $${calculate}\:{lim}_{{x}\rightarrow+\infty} \:{x}^{\mathrm{3}} {ln}\left(\mathrm{1}+{e}^{−{x}^{\mathrm{2}} } \right) \\ $$ Answered by mind is power last updated on 13/Feb/20…
Question Number 146901 by mathmax by abdo last updated on 16/Jul/21 $$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{cos}\left(\mathrm{2arcsinx}\right)\:\: \\ $$$$\mathrm{calculate}\:\frac{\mathrm{dg}}{\mathrm{dx}}\:\mathrm{and}\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{g}}{\mathrm{dx}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{g}\left(\mathrm{x}\right)\mathrm{dx} \\ $$ Answered by ArielVyny…
Question Number 146902 by mathmax by abdo last updated on 16/Jul/21 $$\mathrm{let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{roots}\:\mathrm{of}\:\:\mathrm{z}^{\mathrm{2}} +\mathrm{3z}+\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{simlify}\:\mathrm{U}_{\mathrm{n}} =\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\left(\alpha^{\mathrm{k}} \:+\beta^{\mathrm{k}} \right) \\ $$$$\mathrm{and}\:\mathrm{V}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\left(\frac{\mathrm{1}}{\alpha^{\mathrm{k}}…
Question Number 146899 by mathmax by abdo last updated on 16/Jul/21 $$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{5}} \mathrm{x}\:\:\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{5}\right)} \left(\frac{\pi}{\mathrm{2}}\right) \\ $$ Answered by Olaf_Thorendsen last updated on 17/Jul/21 $${f}\left({x}\right)\:=\:\mathrm{sin}^{\mathrm{5}} {x}…
Question Number 146898 by mathmax by abdo last updated on 16/Jul/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{cosx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)}\mathrm{dx} \\ $$ Answered by qaz last updated on…
Question Number 81195 by jagoll last updated on 10/Feb/20 $${what}\:{is}\:{asymtote}\:{og}\:{function} \\ $$$${y}^{\mathrm{2}} \left({x}−\mathrm{2}{a}\right)={x}^{\mathrm{3}} −{a}^{\mathrm{3}} \:? \\ $$ Commented by mr W last updated on 10/Feb/20…
Question Number 146705 by mathmax by abdo last updated on 15/Jul/21 $$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{sin}\left(\mathrm{tan}\left(\mathrm{2x}\right)−\mathrm{x}\right)+\mathrm{1}−\mathrm{cos}\left(\pi\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} } \\ $$ Answered by Olaf_Thorendsen last updated on 15/Jul/21 $${f}\left({x}\right)\:=\:\frac{\mathrm{sin}\left(\mathrm{tan}\left(\mathrm{2}{x}\right)−{x}\right)+\mathrm{1}−\mathrm{cos}\left(\pi{x}\right)}{{x}^{\mathrm{2}}…
Question Number 81027 by abdomathmax last updated on 09/Feb/20 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\frac{{tan}\left(\mathrm{2}{x}\right)−\mathrm{2}{tanx}−\mathrm{2}{tan}^{\mathrm{3}} {x}}{{x}^{\mathrm{5}} } \\ $$ Commented by john santu last updated on 09/Feb/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{tan2}{x}\:}{\mathrm{2}{x}}.\left(\mathrm{2}{x}\right)−\frac{\mathrm{2tan}\:{x}}{{x}}.\left({x}\right)−\frac{\mathrm{2tan}^{\mathrm{3}}…
Question Number 146549 by mathmax by abdo last updated on 13/Jul/21 $$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{cos}\left(\mathrm{x}−\mathrm{sinx}\right)+\mathrm{1}−\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} } \\ $$ Answered by Olaf_Thorendsen last updated on 14/Jul/21 $$\frac{\mathrm{cos}\left({x}−\mathrm{sin}{x}\right)+\mathrm{1}−\mathrm{cos}\left({x}^{\mathrm{2}}…