Menu Close

Category: Relation and Functions

f-x-y-x-x-2y-1-condition-on-x-and-y-to-have-f-symetric-2-find-f-x-f-y-2-f-x-y-2-f-y-x-3-find-2-f-2-x-and-2-f-2-y-

Question Number 146085 by mathmax by abdo last updated on 10/Jul/21 f(x,y)=xx+2y1)conditiononxandytohavefsymetric2)findfx,fy,2fxy,2fyx$$\left.\mathrm{3}\right)\:\mathrm{find}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{x}}\:\mathrm{and}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{y}} \

Question-145960

Question Number 145960 by puissant last updated on 10/Jul/21 Answered by mathmax by abdo last updated on 10/Jul/21 $$\mathrm{R}_{\mathrm{n}} =\sum_{\mathrm{p}=\mathrm{n}+\mathrm{1}} ^{\mathrm{2n}} \mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{p}}\right)\:\Rightarrow\mathrm{R}_{\mathrm{n}} =_{\mathrm{p}−\mathrm{n}=\mathrm{k}} \:\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}}…