Menu Close

Category: Relation and Functions

If-g-x-x-2-x-2-and-1-2-gof-x-2x-2-5x-2-then-prove-that-f-x-2x-3-

Question Number 13598 by Tinkutara last updated on 21/May/17 $$\mathrm{If}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:+\:{x}\:−\:\mathrm{2}\:\mathrm{and} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:{gof}\left({x}\right)\:=\:\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{5}{x}\:+\:\mathrm{2},\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{f}\left({x}\right)\:=\:\mathrm{2}{x}\:−\:\mathrm{3}. \\ $$ Commented by mrW1 last updated on 21/May/17…

Let-f-R-3-5-R-be-defined-by-f-x-3x-2-5x-3-Then-a-f-1-x-x-b-f-1-x-f-x-c-fof-x-x-d-f-1-x-1-19-f-x-

Question Number 13601 by Tinkutara last updated on 21/May/17 $$\mathrm{Let}\:{f}\::\:\mathbb{R}\:−\:\left\{\frac{\mathrm{3}}{\mathrm{5}}\right\}\:\rightarrow\:\mathbb{R}\:\mathrm{be}\:\mathrm{defined}\:\mathrm{by} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{3}{x}\:+\:\mathrm{2}}{\mathrm{5}{x}\:−\:\mathrm{3}}\:.\:\mathrm{Then}, \\ $$$$\left(\mathrm{a}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:{x} \\ $$$$\left(\mathrm{b}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:−{f}\left({x}\right) \\ $$$$\left(\mathrm{c}\right)\:{fof}\left({x}\right)\:=\:−{x} \\ $$$$\left(\mathrm{d}\right)\:{f}^{−\mathrm{1}} \left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{19}}{f}\left({x}\right) \\ $$…

If-f-R-1-1-is-defined-by-f-x-x-x-1-x-2-then-prove-that-f-1-x-sgn-x-x-1-x-

Question Number 13595 by Tinkutara last updated on 21/May/17 $$\mathrm{If}\:{f}\::\:\mathbb{R}\:\rightarrow\:\left(−\mathrm{1},\:\mathrm{1}\right)\:\mathrm{is}\:\mathrm{defined}\:\mathrm{by} \\ $$$${f}\left({x}\right)\:=\:\frac{−{x}\mid{x}\mid}{\mathrm{1}\:+\:{x}^{\mathrm{2}} }\:,\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=\:−\mathrm{sgn}\left({x}\right)\sqrt{\frac{\mid{x}\mid}{\mathrm{1}\:−\:\mid{x}\mid}} \\ $$ Answered by mrW1 last updated on 21/May/17…

decompose-F-x-nx-n-x-2n-1-inside-C-x-and-R-x-n-2-and-determine-0-F-x-dx-

Question Number 79108 by mathmax by abdo last updated on 22/Jan/20 $${decompose}\:{F}\left({x}\right)=\frac{{nx}^{{n}} }{{x}^{\mathrm{2}{n}} \:+\mathrm{1}}\:\:{inside}\:{C}\left({x}\right)\:{and}\:{R}\left({x}\right)\:\:\left({n}\geqslant\mathrm{2}\right) \\ $$$${and}\:{determine}\:\int_{\mathrm{0}} ^{+\infty} {F}\left({x}\right){dx} \\ $$ Commented by mathmax by abdo…