Question Number 79105 by mathmax by abdo last updated on 22/Jan/20 $${caculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)….\left({x}+{n}\right)}\:\:{with}\:{n}\:{integr}\:\geqslant\mathrm{2} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 79103 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{1}} \:\:\frac{{nx}^{{n}+\mathrm{1}} −\left({n}+\mathrm{1}\right){x}^{{n}} \:+\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\:{without}\:{hospital}\:{rule}. \\ $$ Commented by mathmax by abdo last updated…
Question Number 79098 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 79101 by mathmax by abdo last updated on 22/Jan/20 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{sin}\left({e}^{−{x}^{\mathrm{2}} } \right)+{sinx}−{sin}\left(\mathrm{1}\right)}{{x}^{\mathrm{3}} } \\ $$ Commented by jagoll last updated on 23/Jan/20…
Question Number 79097 by mathmax by abdo last updated on 22/Jan/20 $${find}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 144500 by mathmax by abdo last updated on 25/Jun/21 $$\mathrm{calculate}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{4}} \\ $$ Answered by Dwaipayan Shikari last updated on 26/Jun/21…
Question Number 144499 by mathmax by abdo last updated on 25/Jun/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{n}} \right)}{\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{2}\right)\:\mathrm{natural} \\ $$ Answered by mindispower last updated on 27/Jun/21…
Question Number 144464 by mathmax by abdo last updated on 25/Jun/21 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{2}}{\left(\mathrm{1}+\mathrm{sinx}\right)^{\mathrm{2}} } \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by mathmax by abdo last updated on…
Question Number 78827 by jagoll last updated on 21/Jan/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{inverse}\:\:\mathrm{function} \\ $$$$\mathrm{of}\:\mathrm{y}=\:\frac{\mathrm{5x}^{\mathrm{5}} −\mathrm{3x}^{\mathrm{3}} +\mathrm{x}}{\mathrm{4x}^{\mathrm{4}} −\mathrm{2x}^{\mathrm{2}} +\mathrm{1}} \\ $$ Commented by mr W last updated on…
Question Number 13281 by Tinkutara last updated on 17/May/17 $$\mathrm{Let}\:{f}\left({x}\right)\:=\:\begin{cases}{\mathrm{1}\:+\:{x},\:\mathrm{0}\:\leqslant\:{x}\:\leqslant\:\mathrm{2}}\\{\mathrm{3}\:−\:{x},\:\mathrm{2}\:<\:{x}\:\leqslant\:\mathrm{3}}\end{cases}\:.\:\mathrm{Find}\:{fof}. \\ $$ Answered by ajfour last updated on 17/May/17 Commented by ajfour last updated on…