Menu Close

Category: Relation and Functions

is-g-1-1-2-3-3-5-4-7-a-function-justify-if-this-is-described-by-the-relation-g-x-ax-b-then-what-values-should-be-assigned-to-a-and-b-

Question Number 78685 by berket last updated on 19/Jan/20 $${is}\:{g}\:=\left\{\left(\mathrm{1}.\:\mathrm{1}\right).\left(\mathrm{2}.\mathrm{3}\right).\left(\mathrm{3}\:.\mathrm{5}\right).\left(\mathrm{4}.\mathrm{7}\right)\right\}\:{a}\:{function}?\:{justify}\:{if}\:{this}\:{is}\:{described}\:{by}\:{the}\:{relation}\:{g}\left({x}\right)={ax}+{b}\:{then}\:{what}\:{values}\:{should}\:{be}\:{assigned}\:{to}\:{a}\:{and}\:{b}\:? \\ $$ Commented by mr W last updated on 19/Jan/20 $${sir}:\:{please}\:{don}'{t}\:{type}\:{the}\:{whole}\:{post}\:{in} \\ $$$${one}\:{single}\:{line}!\:{it}'{s}\:{terrible}\:{to}\:{read}! \\ $$…

find-dx-x-2-x-2-x-2-x-2-

Question Number 144216 by Mathspace last updated on 23/Jun/21 $${find}\:\int\:\:\:\frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{2}}+\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{2}}} \\ $$ Answered by bemath last updated on 23/Jun/21 $$\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{2}}}\:=\:\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2}}−\sqrt{\mathrm{x}^{\mathrm{2}}…

let-f-x-1-2-cosx-2-developp-f-at-fourier-serie-

Question Number 144219 by Mathspace last updated on 23/Jun/21 $${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\left(\mathrm{2}+{cosx}\right)^{\mathrm{2}} } \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$ Answered by mathmax by abdo last updated on 25/Jun/21 $$\mathrm{let}\:\varphi\left(\mathrm{a}\right)=\frac{\mathrm{1}}{\mathrm{a}+\mathrm{cosx}}\:\:\mathrm{with}\:\mathrm{a}>\mathrm{1}\:\Rightarrow\varphi^{'}…

find-dx-1-cosx-cos-2x-

Question Number 144213 by Mathspace last updated on 23/Jun/21 $${find}\:\int\:\:\frac{{dx}}{\mathrm{1}+{cosx}+{cos}\left(\mathrm{2}{x}\right)} \\ $$ Answered by bemath last updated on 23/Jun/21 $$\int\:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{cos}\:\mathrm{x}+\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}} \\ $$$$=\:\int\:\frac{\mathrm{dx}}{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:\mathrm{x}} \\…