Menu Close

Category: Relation and Functions

calculate-0-4pi-sinx-3-cosx-2-dx-

Question Number 144214 by Mathspace last updated on 23/Jun/21 $${calculate}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\:\frac{{sinx}}{\left(\mathrm{3}+{cosx}\right)^{\mathrm{2}} }{dx} \\ $$ Answered by bemath last updated on 23/Jun/21 $$=−\underset{\mathrm{0}} {\overset{\mathrm{4}\pi} {\int}}\:\frac{\mathrm{d}\left(\mathrm{3}+\mathrm{cos}\:\mathrm{x}\right)}{\left(\mathrm{3}+\mathrm{cos}\:\mathrm{x}\right)^{\mathrm{2}}…

let-f-x-x-1-x-1-x-3-2-x-1-2-x-4-then-a-find-x-and-y-intercepts-b-find-vertical-asymptote-and-horizontal-asymtote-c-find-domain-and-range-of-f-d-draw-the-graph-of-f-

Question Number 78667 by berket last updated on 19/Jan/20 $${let}\:{f}\left({x}\right)=\left({x}+\mathrm{1}\right)\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)\:}\:{then} \\ $$$${a}.\:{find}\:{x}\:{and}\:{y}\:{intercepts} \\ $$$${b}.\:{find}\:{vertical}\:{asymptote}\:{and}\:{horizontal}\:{asymtote} \\ $$$${c}.\:{find}\:{domain}\:{and}\:{range}\:{of}\:{f} \\ $$$${d}.\:{draw}\:{the}\:{graph}\:{of}\:{f} \\ $$ Answered by Rio…

Prove-that-0-sh-t-sh-t-dt-2-tan-2-

Question Number 144180 by Willson last updated on 22/Jun/21 $$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{0}} {\int}^{\:+\infty} \:\frac{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\alpha\mathrm{t}}\right)}{\boldsymbol{\mathrm{sh}}\left(\boldsymbol{\mathrm{t}}\right)}\boldsymbol{{dt}}\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\boldsymbol{{tan}}\left(\frac{\boldsymbol{\pi\alpha}}{\mathrm{2}}\right) \\ $$ Answered by mindispower last updated on 22/Jun/21 $$=\int_{\mathrm{0}} ^{\infty}…

If-f-x-5-g-2x-1-Find-2f-1-x-A-g-1-x-11-D-g-1-x-2-6-B-g-1-x-9-E-g-1-2x-6-C-g-1-x-6-

Question Number 13099 by Joel577 last updated on 14/May/17 $$\mathrm{If}\:{f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right) \\ $$$$\mathrm{Find}\:\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{11}\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:{g}^{−\mathrm{1}} \left({x}/\mathrm{2}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{B}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:{g}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{C}\right)\:{g}^{−\mathrm{1}}…