Menu Close

Category: Relation and Functions

f-R-R-g-R-R-f-x-determinant-x-g-x-g-x-x-g-x-determinant-f-x-x-x-f-x-

Question Number 316 by 123456 last updated on 25/Jan/15 $${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}\right)=\begin{vmatrix}{{x}}&{{g}\left({x}\right)}\\{{g}\left(−{x}\right)}&{−{x}}\end{vmatrix} \\ $$$${g}\left({x}\right)=\begin{vmatrix}{{f}\left({x}\right)}&{{x}}\\{−{x}}&{{f}\left(−{x}\right)}\end{vmatrix} \\ $$ Answered by prakash jain last updated on…

f-x-y-z-y-2-z-3-1-x-xz-3-1-y-2-xy-2-1-z-3-find-f-x-f-y-f-z-

Question Number 303 by 123456 last updated on 25/Jan/15 $${f}\left({x},{y},{z}\right)=\frac{{y}^{\mathrm{2}} {z}^{\mathrm{3}} }{\mathrm{1}−{x}}+\frac{{xz}^{\mathrm{3}} }{\mathrm{1}−{y}^{\mathrm{2}} }+\frac{{xy}^{\mathrm{2}} }{\mathrm{1}−{z}^{\mathrm{3}} } \\ $$$$\mathrm{find} \\ $$$$\frac{\partial{f}}{\partial{x}}+\frac{\partial{f}}{\partial{y}}+\frac{\partial{f}}{\partial{z}} \\ $$ Answered by prakash…

a-n-m-n-m-n-0-b-n-m-n-gt-0-m-0-b-n-b-m-n-gt-0-m-gt-0-b-n-0-n-0-b-n-1-0-lt-n-lt-5-b-n-1-b-n-1-n-5-b-n-1-5-lt-n-10-1-n-gt-10-find-a-5-5-

Question Number 298 by 123456 last updated on 25/Jan/15 $${a}\left(\mathrm{n},{m}\right)=\begin{cases}{{n}+{m}}&{{n}\leqslant\mathrm{0}}\\{{b}\left({n}\right)+{m}}&{{n}>\mathrm{0}\wedge{m}\leqslant\mathrm{0}}\\{{b}\left({n}\right)+{b}\left({m}\right)}&{{n}>\mathrm{0}\wedge{m}>\mathrm{0}}\end{cases} \\ $$$${b}\left({n}\right)=\begin{cases}{\mathrm{0}}&{{n}\leqslant\mathrm{0}}\\{{b}\left({n}−\mathrm{1}\right)}&{\mathrm{0}<{n}<\mathrm{5}}\\{{b}\left({n}−\mathrm{1}\right)+{b}\left({n}+\mathrm{1}\right)}&{{n}=\mathrm{5}}\\{{b}\left({n}+\mathrm{1}\right)}&{\mathrm{5}<{n}\leqslant\mathrm{10}}\\{\mathrm{1}}&{{n}>\mathrm{10}}\end{cases} \\ $$$$\mathrm{find} \\ $$$${a}\left(\mathrm{5},\mathrm{5}\right)+{a}\left(\mathrm{4},\mathrm{6}\right) \\ $$ Answered by prakash jain last updated on…

a-n-m-m-n-0-a-n-1-m-2-n-gt-0-n-0-mod-2-a-n-2-m-1-nn-n-gt-0-n-1-mod-2-m-0-a-m-1-n-1-a-n-2-m-2-n-gt-0-n-1-mod-2-m-gt-0-evaluate-a-7-5-

Question Number 291 by 123456 last updated on 25/Jan/15 $${a}\left({n},{m}\right)=\begin{cases}{{m}}&{{n}\leqslant\mathrm{0}}\\{{a}\left({n}−\mathrm{1},{m}+\mathrm{2}\right)}&{{n}>\mathrm{0}\wedge{n}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right)}\\{{a}\left({n}−\mathrm{2},{m}−\mathrm{1}\right)+{nn}}&{{n}>\mathrm{0}\wedge{n}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right)\wedge{m}\leqslant\mathrm{0}}\\{{a}\left({m}−\mathrm{1},{n}−\mathrm{1}\right)+{a}\left({n}−\mathrm{2},{m}−\mathrm{2}\right)}&{{n}>\mathrm{0}\wedge{n}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right)\wedge{m}>\mathrm{0}}\end{cases} \\ $$$$\mathrm{evaluate}\:{a}\left(\mathrm{7},\mathrm{5}\right) \\ $$ Answered by prakash jain last updated on 19/Dec/14 $${a}\left(\mathrm{7},\mathrm{5}\right)={a}\left(\mathrm{4},\mathrm{6}\right)+{a}\left(\mathrm{5},\mathrm{3}\right) \\ $$$$={a}\left(\mathrm{3},\mathrm{8}\right)+{a}\left(\mathrm{2},\mathrm{4}\right)+{a}\left(\mathrm{3},\mathrm{1}\right)…

given-f-x-y-ax-bxy-cy-for-x-y-R-2-proof-that-if-a-c-1-then-f-x-y-f-y-x-x-y-is-f-x-y-bounced-

Question Number 272 by 123456 last updated on 25/Jan/15 $$\mathrm{given}\:\mathrm{f}\left(\mathrm{x},{y}\right)={ax}+{bxy}+{cy}\:\mathrm{for}\:\left(\mathrm{x},{y}\right)\in\mathbb{R}^{\mathrm{2}} \\ $$$$\mathrm{proof}\:\mathrm{that}\:\mathrm{if}\:\mid{a}−{c}\mid\leqslant\mathrm{1}\:\mathrm{then}\:\mid{f}\left({x},{y}\right)−{f}\left({y},{x}\right)\mid\leqslant\mid{x}−{y}\mid \\ $$$$\mathrm{is}\:\mathrm{f}\left(\mathrm{x},{y}\right)\:\mathrm{bounced}? \\ $$ Answered by prakash jain last updated on 18/Dec/14 $${f}\left({x},{y}\right)−{f}\left({y},{x}\right)={ax}+{bxy}+{cy}−{ay}−{bxy}−{cx}…

If-f-x-is-a-function-satisfying-f-x-y-f-x-f-y-for-all-x-y-N-such-that-f-1-3-and-x-1-n-f-x-120-Then-find-the-value-of-n-

Question Number 257 by abcd last updated on 25/Jan/15 $$\mathrm{If}\:\mathrm{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathrm{satisfying} \\ $$$$\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)=\mathrm{f}\left(\mathrm{x}\right)\mathrm{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\in\mathbb{N}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{3}\:\mathrm{and}\:\underset{{x}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{f}\left(\mathrm{x}\right)=\mathrm{120}.\:\mathrm{Then}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{n}. \\ $$ Answered by 123456 last updated…

find-f-10-given-f-0-0-f-1-1-f-x-f-x-1-f-x-2-x-gt-1-x-0-mod-2-f-x-f-x-1-f-x-2-x-gt-1-x-1-mod-2-

Question Number 239 by 123456 last updated on 25/Jan/15 $$\mathrm{find}\:\mathrm{f}\left(\mathrm{10}\right)\:\mathrm{given} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)+\mathrm{f}\left(\mathrm{x}−\mathrm{2}\right),\mathrm{x}>\mathrm{1},\mathrm{x}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)\mathrm{f}\left(\mathrm{x}−\mathrm{2}\right),\mathrm{x}>\mathrm{1},\mathrm{x}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$ Answered by prakash jain last…