Question Number 143606 by bobhans last updated on 16/Jun/21 Answered by TheHoneyCat last updated on 16/Jun/21 $${f}\:\mathrm{surjective}\:\Leftrightarrow\:\:\left[\mathrm{1},\:+\infty\left[\subset{f}\left(\mathbb{R}\right)\right.\right. \\ $$$$ \\ $$$$\mathrm{knowing}\:\mathrm{that}\:{f}\in\mathscr{C}^{\mathrm{0}} \left(\mathbb{R},\left[\mathrm{1},+\infty\left[\right)\right.\right. \\ $$$$\mathrm{and}\:\mathrm{that}\:\:{f}\left({x}\right)\underset{{x}\rightarrow\mp\infty} {\rightarrow}+\infty…
Question Number 143576 by Mathspace last updated on 15/Jun/21 $${find}\:{L}\left(\frac{{arctanx}}{{x}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143575 by Mathspace last updated on 15/Jun/21 $${find}\:{L}\left({e}^{−\sqrt{{x}}} \right) \\ $$ Answered by Dwaipayan Shikari last updated on 15/Jun/21 $$\mathscr{L}\left({e}^{−\sqrt{{x}}} \right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{sx}}…
Question Number 143562 by 0731619 last updated on 15/Jun/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 143546 by mathmax by abdo last updated on 15/Jun/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{log}^{\mathrm{2}} \mathrm{x}}{\left(\mathrm{8}+\mathrm{x}^{\mathrm{4}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by mathmax by abdo last…
Question Number 143488 by mathmax by abdo last updated on 15/Jun/21 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}+\mathrm{sinx}} \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$ Answered by mathmax by abdo last updated on 16/Jun/21…
Question Number 12386 by Joel576 last updated on 21/Apr/17 $${f}\left({x}\:+\:\frac{\mathrm{1}}{{x}}\right)\:=\:\frac{{x}^{\mathrm{6}} \:+\:\mathrm{1}}{\mathrm{27}} \\ $$$${f}\left({x}\right)\:=\:? \\ $$ Answered by ajfour last updated on 21/Apr/17 $${let}\:\:\left({x}+\frac{\mathrm{1}}{{x}}\right)={t} \\ $$$${since}\:\:\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{3}}…
Question Number 77897 by mathmax by abdo last updated on 11/Jan/20 $${calculateU}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left(−\mathrm{1}\right)^{{k}} \:\:\:{and}\:{v}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} \left(−\mathrm{1}\right)^{{k}} \\ $$ Commented by abdomathmax…
Question Number 143381 by Mathspace last updated on 13/Jun/21 $${let}\:{f}\left({x}\right)={arctan}\left(\sqrt{\mathrm{2}}{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right){and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right){if}\:{f}\left({x}\right)=\Sigma{a}_{{n}} {x}^{{n}} \:\:{find}\:{the}\: \\ $$$${sequence}\:{a}_{{n}} \\ $$ Answered by…
Question Number 143382 by Mathspace last updated on 13/Jun/21 $${find}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {log}\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com