Question Number 142987 by mathmax by abdo last updated on 08/Jun/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} \mathrm{wich}\:\mathrm{verify}\:\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\mathrm{u}_{\mathrm{n}} −\lambda\mathrm{u}_{\mathrm{n}−\mathrm{1}} \\ $$$$\lambda\:\mathrm{real} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 142980 by mathmax by abdo last updated on 08/Jun/21 $$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } \mathrm{log}\left(\mathrm{2}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{1}\right) \\ $$$$\mathrm{determine}\:\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \:\mathrm{and}\:\Sigma\:\mathrm{nU}_{\mathrm{n}} \\ $$ Terms of…
Question Number 77367 by msup trace by abdo last updated on 05/Jan/20 $${let}\:{the}\:{cercle}\:\:\left({x}+\mathrm{1}\right)^{\mathrm{2}\:} +\left({y}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{9} \\ $$$${and}\:{the}\:{point}\:\:{A}\left(\mathrm{4},\mathrm{1}\right) \\ $$$${vrrify}\:{that}\:\:{A}\:\:{is}\:{out}\:{of}\:{circle} \\ $$$${and}\:\:{determine}\:{the}\:{equation}\:{of} \\ $$$${two}\:{tangentes}\:{to}\:{circle}\:{wich} \\ $$$${passes}\:{by}\:{point}\:{A}.…
Question Number 142869 by mathmax by abdo last updated on 06/Jun/21 $$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$ Answered by Ar Brandon last updated…
Question Number 142871 by mathmax by abdo last updated on 06/Jun/21 $$\mathrm{determine}\:\mathrm{arctan}\left(\mathrm{x}+\mathrm{iy}\right)\:\mathrm{at}\:\mathrm{form}\:\mathrm{u}\left(\mathrm{x},\mathrm{y}\right)+\mathrm{iv}\left(\mathrm{x},\mathrm{y}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11608 by agni5 last updated on 29/Mar/17 $$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{xtan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:,\:\:\:\:\:\:\:\mathrm{x}\neq\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:,\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}=\mathrm{0} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{f}\:\mathrm{is}\:\mathrm{countinous}\:\mathrm{but}\:\mathrm{not}\:\mathrm{differentiable} \\ $$$$\mathrm{at}\:\mathrm{x}=\mathrm{0}. \\ $$ Answered by mrW1 last updated on…
Question Number 11517 by Joel576 last updated on 27/Mar/17 $${f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{If}\:\:{x}^{\mathrm{2}} {f}\left({x}\right)\:+\:{f}\left(\mathrm{1}−{x}\right)\:=\:\mathrm{2}{x}\:−\:{x}^{\mathrm{4}} \\ $$$$\mathrm{Determine}\:{f}\left({x}\right) \\ $$ Answered by sma3l2996 last updated on 27/Mar/17 $${let}\:{u}=\mathrm{1}−{x}…
Question Number 142429 by Mathspace last updated on 31/May/21 $${calculate}\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{{n}} {x}}{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma{U}_{{n}} \\ $$ Answered by mathmax by abdo last…
Question Number 142425 by Mathspace last updated on 31/May/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{3}} {x}}{\mathrm{1}+{x}^{\mathrm{3}} }{dx} \\ $$ Answered by mathmax by abdo last updated on 02/Jun/21…
Question Number 142430 by Mathspace last updated on 31/May/21 $${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{log}^{\mathrm{2}} {x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$ Answered by Dwaipayan Shikari last updated on 31/May/21 $$\int_{\mathrm{0}}…