Question Number 76361 by mathmax by abdo last updated on 26/Dec/19 $${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{e}^{{A}} \:\:,{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{find}\:{sinA}\:{and}\:{cosA} \\ $$$$\left.\mathrm{4}\right)\:{find}\:{ch}\left({A}\right)\:{and}\:{sh}\left({A}\right) \\ $$ Commented by…
Question Number 76354 by mathmax by abdo last updated on 26/Dec/19 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} \:{arctan}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 10741 by okhema last updated on 24/Feb/17 $${a}\:{function}\:{f}\:{is}\:{defined}\:{by}\:{f}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}},\:{x}\:{not}\:{equal}\:{to}\:\mathrm{1}.{determine}\:{whether}\:{f}\:{is}\:{bijective},{that}\:{is},{both}\:{one}\:{to}\:{one}\:{and}\:{onto} \\ $$$$ \\ $$ Answered by mrW1 last updated on 24/Feb/17 $${f}\left({x}\right)=\:\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}={y} \\ $$$${x}+\mathrm{3}={yx}−{y} \\…
Question Number 141775 by mathmax by abdo last updated on 23/May/21 $$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by qaz last updated…
Question Number 141774 by mathmax by abdo last updated on 23/May/21 $$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 76192 by abdomathmax last updated on 25/Dec/19 $${calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\frac{{arctan}\left({sin}\left(\mathrm{2}{x}\right)\right)−{sin}\left({arctan}\left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} } \\ $$ Answered by benjo last updated on 25/Dec/19 Commented by benjo last…
Question Number 76193 by abdomathmax last updated on 25/Dec/19 $${calculate}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right){sh}\left(\mathrm{3}{x}\right){dx} \\ $$ Commented by benjo last updated on 25/Dec/19 $$\mathrm{sir}\:\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{sh}\left(\mathrm{3x}\right)\:=\mathrm{sinh}\:\left(\mathrm{3x}\right)? \\ $$ Commented by…
Question Number 76190 by abdomathmax last updated on 25/Dec/19 $${let}\:{f}\left({x}\right)=\frac{{arctan}\left(\mathrm{1}+{x}\right)}{\mathrm{2}+{x}} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie}. \\ $$ Commented by mathmax by abdo last updated…
Question Number 141653 by Mathspace last updated on 21/May/21 $${what}\:{is}\:{condition}\:{to}\:{have} \\ $$$${log}\left(\:{I}\:+{A}\right)=\Sigma\:{a}_{{n}} {A}^{{n}} \\ $$$${and}\:{determine}\:{the}\:{sequence}\:\left({a}_{{n}} \right) \\ $$$${A}\:\in\:{M}_{{n}} \left({C}\right) \\ $$ Terms of Service Privacy…
Question Number 141652 by Mathspace last updated on 21/May/21 $${A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\\{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${find}\:{e}^{{A}\:} \:{and}\:{e}^{{tA}} \\ $$$${find}\:{ch}\left({A}\right)\:{and}\:{sh}\left({A}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com