Menu Close

Category: Relation and Functions

Question-9571

Question Number 9571 by PANKAJ last updated on 16/Dec/16 Answered by ridwan balatif last updated on 17/Dec/16 $$\mathrm{1}.\left(\frac{\mathrm{x}}{\mathrm{3}}+\mathrm{1},\mathrm{y}−\frac{\mathrm{2}}{\mathrm{3}}\right)=\left(\frac{\mathrm{5}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\frac{\mathrm{x}}{\mathrm{3}}+\mathrm{1}=\frac{\mathrm{5}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}−\frac{\mathrm{2}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}=\mathrm{1} \\ $$$$\mathrm{x}=\mathrm{2} \\…

let-f-x-arctan-2-x-developp-f-at-integr-serie-

Question Number 140638 by Mathspace last updated on 10/May/21 $${let}\:{f}\left({x}\right)={arctan}\left(\frac{\mathrm{2}}{{x}}\right) \\ $$$${developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$ Answered by Dwaipayan Shikari last updated on 10/May/21 $${f}\left({x}\right)={f}\left(\mathrm{0}\right)+\frac{{f}'\left(\mathrm{0}\right)}{\mathrm{1}!}{x}+\frac{{f}''\left(\mathrm{0}\right)}{\mathrm{2}!}{x}^{\mathrm{2}} +.. \\…

Prove-that-x-0-t-e-t-1-dt-n-1-1-e-x-n-n-2-

Question Number 140531 by Willson last updated on 09/May/21 $$\mathrm{Prove}\:\mathrm{that}\:\:\underset{\mathrm{0}} {\int}^{\:\mathrm{x}} \:\frac{\mathrm{t}}{\mathrm{e}^{\mathrm{t}} −\mathrm{1}}\:\mathrm{dt}\:=\:\underset{\mathrm{n}=\mathrm{1}} {\overset{+\infty} {\sum}}\:\frac{\left(\mathrm{1}−\mathrm{e}^{−\mathrm{x}} \right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$ Answered by mathmax by abdo…

f-x-2-f-1-x-1-x-64x-x-D-f-x-

Question Number 140470 by EDWIN88 last updated on 08/May/21 $$\left(\mathrm{f}\left(\mathrm{x}\right)\right)^{\mathrm{2}} .\:\mathrm{f}\left(\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)\:=\:\mathrm{64x}\:,\:\forall\mathrm{x}\in\mathrm{D} \\ $$$$\Rightarrow\:\mathrm{f}\left(\mathrm{x}\right)\:=? \\ $$ Answered by benjo_mathlover last updated on 08/May/21 $$\left(\mathrm{1}\right)\:\left(\mathrm{f}\left(\mathrm{x}\right)\right)^{\mathrm{2}} .\mathrm{f}\left(\frac{\mathrm{1}−\mathrm{x}}{\mathrm{1}+\mathrm{x}}\right)\:=\:\mathrm{64x} \\…