Question Number 60503 by prof Abdo imad last updated on 21/May/19 $${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+…+{n}}{\mathrm{1}^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}} \:+\mathrm{3}^{\mathrm{3}} \:+…+{n}^{\mathrm{3}} } \\ $$ Answered by Prithwish sen last…
Question Number 60504 by prof Abdo imad last updated on 21/May/19 $$\:{let}\:{S}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}^{\mathrm{2}} \:+\mathrm{2}^{\mathrm{2}} \:+…{k}^{\mathrm{2}} }{\mathrm{1}^{\mathrm{4}} \:+\mathrm{2}^{\mathrm{4}} \:+…+{k}^{\mathrm{4}} } \\ $$$${study}\:{the}\:{convergence}\:{of}\:{S}_{{n}} \\ $$…
let-f-x-arctan-2x-ln-1-x-2-1-calculate-f-x-2-determine-f-n-x-and-f-n-0-3-developp-f-at-integr-serie-
Question Number 60502 by prof Abdo imad last updated on 21/May/19 $${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{2}{x}\right)\:{ln}\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}^{'} \left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:\:{determine}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{3}\right)\:{developp}\:\:{f}\:{at}\:{integr}\:{serie}\:. \\ $$ Commented…
Question Number 60499 by abdo mathsup 649 cc last updated on 21/May/19 $${find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{3}} \left({n}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$ Commented by maxmathsup by imad…
Question Number 60493 by Mr X pcx last updated on 21/May/19 $${let}\:{f}\left({x}\right)=\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${approximate}\:{f}\left({x}\right)\:{by}\:{a}\:{polynome} \\ $$$${at}\:{v}\left(\mathrm{0}\right) \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 125968 by bramlexs22 last updated on 16/Dec/20 $$\:\:\:{Find}\:{f}\left({x}\right)\:{such}\:{that}\: \\ $$$$\:\:{f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)\:=\:{x} \\ $$ Answered by liberty last updated on 16/Dec/20 $$\left(\mathrm{1}\right)\:{f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}}\right)\:=\:{x} \\ $$$${replace}\:{x}\rightarrow\frac{\mathrm{1}}{\mathrm{1}−{x}}\: \\…
Question Number 125892 by mathmax by abdo last updated on 15/Dec/20 $$\mathrm{decompose}\:\mathrm{tbe}\:\mathrm{fraction}\:\mathrm{F}\left(\mathrm{x}\right)\:=\frac{\mathrm{x}^{\mathrm{2}} }{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}} } \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 60203 by meme last updated on 18/May/19 $${demonstrate}\: \\ $$$$\mid{sin}\left({y}\right)−{sin}\left({x}\right)\mid\leqslant\mid{y}−{x}\mid \\ $$ Commented by Mr X pcx last updated on 19/May/19 $${let}\:{f}\left({x}\right)={sinx}\:{we}\:{have}\:{f}^{,} \left({x}\right)={cosx}…
Question Number 60198 by Mr X pcx last updated on 18/May/19 $${find}\:{lim}_{{n}\rightarrow+\infty} \:{ln}\left(\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{4}} }{{n}^{\mathrm{4}} }\right)^{\frac{\mathrm{1}}{{n}}} \right) \\ $$ Answered by tanmay last updated…
Question Number 60197 by Mr X pcx last updated on 18/May/19 $${valculste}\:{lim}_{{n}\rightarrow+\infty} \left({ln}\left(\left(\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{1}+\frac{{k}^{\mathrm{3}} }{{n}^{\mathrm{3}} }\right)\right)^{\frac{\mathrm{1}}{{n}}} \right)\right. \\ $$ Commented by Mr X pcx…