Menu Close

Category: Relation and Functions

let-and-roots-of-the-equation-x-2-x-2-0-simplify-A-p-p-p-and-calculate-p-0-n-1-A-p-and-p-0-n-1-A-p-2-

Question Number 73487 by abdomathmax last updated on 13/Nov/19 $${let}\:\:\:\:\alpha\:{and}\:\beta\:{roots}\:{of}\:\:{the}\:{equation}\:\:{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0} \\ $$$${simplify}\:\:\:{A}_{{p}} =\:\alpha^{{p}} \:+\beta^{{p}} \:{and}\:{calculate} \\ $$$$\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{A}_{{p}} \:\:{and}\:\sum_{{p}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{A}_{{p}} ^{\mathrm{2}} \\…

let-P-x-1-ix-n-1-ix-n-with-n-integr-decompose-the-Fraction-F-x-1-P-x-

Question Number 73486 by abdomathmax last updated on 13/Nov/19 $${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} −\left(\mathrm{1}−{ix}\right)^{{n}} \:{with}\:{n}\:{integr} \\ $$$${decompose}\:{the}\:{Fraction}\:{F}\:\left({x}\right)=\frac{\mathrm{1}}{{P}\left({x}\right)} \\ $$ Commented by abdomathmax last updated on 17/Nov/19 $${P}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\frac{\left(\mathrm{1}−{ix}\right)^{{n}} }{\left(\mathrm{1}+{ix}\right)^{{n}}…

find-the-roots-of-P-x-1-ix-jx-2-n-1-with-j-e-i-2pi-3-then-factorize-P-x-inside-C-x-decompose-the-fraction-F-1-P-

Question Number 73485 by abdomathmax last updated on 13/Nov/19 $${find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\:+{jx}^{\mathrm{2}} \right)^{{n}} −\mathrm{1} \\ $$$${with}\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{then}\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$${decompose}\:{the}\:{fraction}\:{F}=\frac{\mathrm{1}}{{P}} \\ $$ Terms of Service Privacy Policy Contact:…

calculate-1-cos-1-i-sin-1-3i-2-arctan-i-arctan-2i-arctan-1-i-arctan-1-i-arctan-1-2i-3-have-us-conj-arctanz-arctan-z-

Question Number 73411 by mathmax by abdo last updated on 11/Nov/19 $${calculate}\:\: \\ $$$$\left.\mathrm{1}\right){cos}\left(\mathrm{1}+{i}\right)\:,\:{sin}\left(\mathrm{1}+\mathrm{3}{i}\right) \\ $$$$\left.\mathrm{2}\right)\:{arctan}\left({i}\right),\:{arctan}\left(\mathrm{2}{i}\right)\:,\:{arctan}\left(\mathrm{1}+{i}\right)\:,{arctan}\left(\mathrm{1}−{i}\right)\:, \\ $$$${arctan}\left(\mathrm{1}+\mathrm{2}{i}\right). \\ $$$$\left.\mathrm{3}\right)\:{have}\:{us}\:\:{conj}\left({arctanz}\right)={arctan}\left(\overset{−} {{z}}\right)? \\ $$ Commented by…

3-3-4-2-2-3-

Question Number 7833 by mohitkumar88@gmail.com last updated on 18/Sep/16 $$\mathrm{3}\frac{\mathrm{3}}{\mathrm{4}}×\mathrm{2}\frac{\mathrm{2}}{\mathrm{3}}= \\ $$ Answered by Rasheed Soomro last updated on 18/Sep/16 $$\mathrm{3}\frac{\mathrm{3}}{\mathrm{4}}×\mathrm{2}\frac{\mathrm{2}}{\mathrm{3}}=\frac{\overset{\mathrm{5}} {\mathrm{15}}}{\underset{\mathrm{1}} {\mathrm{4}}}×\frac{\overset{\mathrm{2}} {\mathrm{8}}}{\underset{\mathrm{1}} {\mathrm{3}}}=\frac{\mathrm{10}}{\mathrm{1}}=\mathrm{10}…

let-w-x-0-lnt-x-2-t-2-2-dt-1-explicit-w-x-2-calculate-U-n-0-lnt-n-2-t-2-2-dt-find-lim-n-n-4-U-n-and-determine-nature-of-tbe-serie-U-n-

Question Number 73327 by mathmax by abdo last updated on 10/Nov/19 $${let}\:{w}\left({x}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnt}}{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$\left.\mathrm{1}\right)\:{explicit}\:{w}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{lnt}}{\left({n}^{\mathrm{2}} \:+{t}^{\mathrm{2}}…