Menu Close

Category: Relation and Functions

prove-that-k-1-n-H-k-n-1-H-n-n-and-k-1-n-H-k-2-n-1-H-n-2-2n-1-H-n-2n-

Question Number 73044 by mathmax by abdo last updated on 05/Nov/19 $${prove}\:{that}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} =\left({n}+\mathrm{1}\right){H}_{{n}} −{n} \\ $$$${and}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{H}_{{k}} ^{\mathrm{2}} \:=\left({n}+\mathrm{1}\right){H}_{{n}} ^{\mathrm{2}} \:−\left(\mathrm{2}{n}+\mathrm{1}\right){H}_{{n}} \:+\mathrm{2}{n}…

Prove-that-n-1-2-n-2-4-n-4-8-n-8-16-n-Such-that-denotes-greatest-integer-function-and-n-N-

Question Number 7317 by lakshaysethi last updated on 24/Aug/16 $${Prove}\:{that}\:\left[\frac{{n}+\mathrm{1}}{\mathrm{2}}\right]+\left[\frac{{n}+\mathrm{2}}{\mathrm{4}}\right]+\left[\frac{{n}+\mathrm{4}}{\mathrm{8}}\right]+\left[\frac{{n}+\mathrm{8}}{\:\mathrm{16}}\right]+……..={n}. \\ $$$${Such}\:{that}\:\left[.\right]\:{denotes}\:{greatest}\:{integer}\:{function}\:{and}\:{n}\in{N}. \\ $$ Commented by FilupSmith last updated on 23/Aug/16 $${S}=\underset{{t}=\mathrm{1}} {\overset{\infty} {\sum}}\lceil\frac{{n}+\mathrm{2}^{{t}−\mathrm{1}} }{\mathrm{2}^{{t}}…