Menu Close

Category: Relation and Functions

If-f-x-x-2-4-x-2-x-2-3-0-1-find-Alpha-3-Epsalum-0-1-Find-delta-

Question Number 5232 by sanusihammed last updated on 02/May/16 $${If}\:{f}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} −\mathrm{4}}{{x}−\mathrm{2}}\:\:\:\: \\ $$$$\:\:\:\:{x}\rightarrow\mathrm{2} \\ $$$$ \\ $$$$\alpha\:=\:\mathrm{3}\:.\:\Sigma\:=\:\mathrm{0}.\mathrm{1}\:\:\:{find}\:\:\:\delta \\ $$$$ \\ $$$${Alpha}\:=\:\mathrm{3}\:\:\:{Epsalum}\:=\:\mathrm{0}.\mathrm{1}\:{Find}\:{delta} \\ $$ Commented by…

What-is-range-of-function-f-x-x-1-x-2-x-3-x-4-1-where-x-1-1-

Question Number 136270 by EDWIN88 last updated on 20/Mar/21 $$\mathrm{What}\:\mathrm{is}\:\mathrm{range}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}+\mathrm{3}\right)\left(\mathrm{x}+\mathrm{4}\right)+\mathrm{1} \\ $$$$\mathrm{where}\:\mathrm{x}\:\in\:\left[\:−\mathrm{1},\:\mathrm{1}\:\right] \\ $$ Answered by mr W last updated on 20/Mar/21 $${f}\left({x}\right)=\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{4}\right)\left({x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{6}\right)+\mathrm{1}…

Given-2f-x-f-1-x-6x-3-x-then-1-2-f-x-dx-

Question Number 136259 by liberty last updated on 20/Mar/21 $${Given}\:\mathrm{2}{f}\left({x}\right)+{f}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{6}{x}+\frac{\mathrm{3}}{{x}} \\ $$$${then}\:\int_{\mathrm{1}} ^{\:\mathrm{2}} {f}\left({x}\right){dx}=? \\ $$ Answered by EDWIN88 last updated on 20/Mar/21 $$\mathrm{Replacing}\:\mathrm{x}\:\mathrm{by}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{gives} \\…

explicite-f-t-0-e-t-1-x-2-1-x-2-dx-with-t-0-

Question Number 136033 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{explicite}\:\mathrm{f}\left(\mathrm{t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{−\mathrm{t}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{with}\:\mathrm{t}\geqslant\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact:…

proof-the-existence-of-x-1-x-2-x-n-integr-natural-1-x-1-1-x-2-1-x-n-1-with-x-i-x-j-for-i-j-

Question Number 136032 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{proof}\:\mathrm{the}\:\mathrm{existence}\:\mathrm{of}\:\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,….\mathrm{x}_{\mathrm{n}} \:\mathrm{integr}\:\mathrm{natural}\:/ \\ $$$$\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{1}} }+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{2}} }+…+\frac{\mathrm{1}}{\mathrm{x}_{\mathrm{n}} }\:=\mathrm{1}\:\:\mathrm{with}\:\mathrm{x}_{\mathrm{i}} \neq\mathrm{x}_{\mathrm{j}} \:\mathrm{for}\:\mathrm{i}\neq\mathrm{j} \\ $$ Terms…

calculate-lim-x-0-ln-x-sinx-x-2-

Question Number 136029 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{ln}\left(\frac{\mathrm{x}}{\mathrm{sinx}}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$ Answered by liberty last updated on 18/Mar/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{ln}\:{x}−\mathrm{ln}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{2}}…