Question Number 136031 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{study}\:\mathrm{the}\:\mathrm{sequence}\:\:\mathrm{U}_{\mathrm{n}} =\sqrt{\frac{\mathrm{1}+\mathrm{u}_{\mathrm{n}−\mathrm{1}} }{\mathrm{2}}} \\ $$$$\mathrm{with}\:\mathrm{u}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} \\ $$ Answered by mindispower last updated…
Question Number 136028 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{−\mathrm{x}} \mathrm{arctan}\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136025 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{sove}\:\mathrm{y}^{''} +\mathrm{2y}−\mathrm{2}\:=\mathrm{xe}^{−\mathrm{x}} \mathrm{sin}\left(\mathrm{2x}\right)\:\:\mathrm{with}\:\mathrm{y}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:\mathrm{y}^{'} \left(\mathrm{0}\right)=−\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136030 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{solve}\:\mathrm{y}^{\left(\mathrm{3}\right)} −\mathrm{2y}^{\left(\mathrm{2}\right)} \:+\mathrm{y}\:=\mathrm{x}−\mathrm{sinx} \\ $$ Answered by Ñï= last updated on 18/Mar/21 $${y}'''−\mathrm{2}{y}''+{y}={x}−\mathrm{sin}\:{x} \\…
Question Number 136024 by mathmax by abdo last updated on 18/Mar/21 $$\left.\mathrm{1}\right)\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{3}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{determine}\:\int\:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$ Commented by yutytfjh67ihd last updated…
Question Number 136021 by mathmax by abdo last updated on 18/Mar/21 $$\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}−\mathrm{a}\right)^{\mathrm{n}} \left(\mathrm{x}−\mathrm{b}\right)^{\mathrm{m}} }\:\:\mathrm{with}\:\mathrm{a}\neq\mathrm{b} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 136022 by mathmax by abdo last updated on 18/Mar/21 $$\left.\mathrm{1}\right)\mathrm{decompose}\:\mathrm{inside}\:\mathrm{C}\left(\mathrm{x}\right)\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{n}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{n}} } \\ $$ Terms of Service…
Question Number 4904 by love math last updated on 20/Mar/16 $${Determine}\:{the}\:{smallest}\:{natural} \\ $$$${value}\:{of}\:{n},\:{so}\:{the}\:{function}\: \\ $$$${y}=\:\mathrm{5}{x}\:{sin}\:\mathrm{5}{nx}\:{will}\:{be}\:{even}. \\ $$ Commented by Yozzii last updated on 20/Mar/16 $${y}\left(−{x}\right)=\mathrm{5}\left(−{x}\right){sin}\left(−\mathrm{5}{nx}\right)…
Question Number 4873 by prakash jain last updated on 18/Mar/16 $$\mathrm{If}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{Continous}\:\mathrm{and}\:\mathrm{odd}\:\mathrm{function}. \\ $$$$\mathrm{Then}\:\mathrm{is}\:{f}\left(\mathrm{0}\right)=\mathrm{0}? \\ $$ Commented by prakash jain last updated on 18/Mar/16 $$\mathrm{Thanks}.\:\mathrm{That}\:\mathrm{is}\:\mathrm{what}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{but}\:\mathrm{couldn}'\mathrm{t}\:\mathrm{think}\:\mathrm{of} \\…
Question Number 135892 by mathmax by abdo last updated on 16/Mar/21 $$\left.\mathrm{1}\right)\mathrm{decompose}\:\mathrm{inside}\:\mathrm{R}\left(\mathrm{x}\right)\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{3}} \left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\mathrm{F}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$…