Menu Close

Category: Relation and Functions

1-decompose-inside-R-x-the-fraction-F-x-1-x-2-3-x-1-4-2-calculate-2-F-x-dx-3-calculate-2-F-2-x-dx-

Question Number 135892 by mathmax by abdo last updated on 16/Mar/21 $$\left.\mathrm{1}\right)\mathrm{decompose}\:\mathrm{inside}\:\mathrm{R}\left(\mathrm{x}\right)\:\mathrm{the}\:\mathrm{fraction}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{3}} \left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{calculate}\:\int_{\mathrm{2}} ^{\infty} \:\mathrm{F}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{dx} \\ $$…

y-f-x-g-x-f-x-odd-function-g-x-even-function-find-f-0-if-y-2x-2-sin-x-3-1-

Question Number 4820 by love math last updated on 16/Mar/16 $${y}={f}\left({x}\right)+{g}\left({x}\right) \\ $$$$ \\ $$$${f}\left({x}\right)\:−\:{odd}\:{function} \\ $$$${g}\left({x}\right)\:−\:{even}\:{function} \\ $$$$ \\ $$$${find}\:{f}\left(\mathrm{0}\right),\:{if}\:{y}=\:\mathrm{2}{x}^{\mathrm{2}} +\frac{{sin}\:{x}}{\mathrm{3}}+\mathrm{1} \\ $$ Answered…

If-g-0-2-g-0-1-and-f-x-e-2x-g-x-What-the-value-of-f-1-2-

Question Number 135780 by bramlexs22 last updated on 15/Mar/21 $${If}\:{g}\left(\mathrm{0}\right)=\mathrm{2}\:,\:{g}\:'\left(\mathrm{0}\right)=\mathrm{1}\:{and}\: \\ $$$${f}\left({x}\right)\:=\:{e}^{\mathrm{2}{x}} {g}\left({x}\right).\:{What}\:{the}\:{value} \\ $$$${of}\:{f}^{−\mathrm{1}} \left(\mathrm{2}\right). \\ $$ Commented by bramlexs22 last updated on 16/Mar/21…

g-1-x-x-g-n-x-g-n-1-x-x-f-x-lim-n-g-n-x-Is-f-x-analytical-for-some-subset-of-R-

Question Number 4312 by prakash jain last updated on 08/Jan/16 $${g}_{\mathrm{1}} \left({x}\right)={x} \\ $$$${g}_{{n}} \left({x}\right)=\left[{g}_{{n}−\mathrm{1}} \left({x}\right)\right]^{{x}} \\ $$$${f}\left({x}\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{g}_{{n}} \left({x}\right) \\ $$$$\mathrm{Is}\:{f}\left({x}\right)\:\mathrm{analytical}\:\mathrm{for}\:\mathrm{some}\:\mathrm{subset}\:\mathrm{of}\:\mathbb{R}? \\ $$ Terms…