Menu Close

Category: Relation and Functions

let-p-x-x-in-n-n-n-with-n-integr-natural-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-decompose-the-fraction-F-x-1-p-x-

Question Number 69795 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+{in}\right)^{{n}} −{n}^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$ Commented by mathmax…

let-p-x-x-1-6-e-i-with-real-1-find-the-roots-of-p-x-2-factorize-p-x-inside-C-x-3-factorize-p-x-inside-R-x-

Question Number 69794 by mathmax by abdo last updated on 27/Sep/19 $${let}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{\mathrm{6}} \:−{e}^{{i}\alpha} \:\:\:\:{with}\:\alpha\:{real} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right){inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right){factorize}\:{p}\left({x}\right){inside}\:{R}\left[{x}\right] \\ $$ Commented by mathmax…

find-f-dx-x-x-2-3-and-g-dx-x-x-2-3-2-with-real-

Question Number 69792 by mathmax by abdo last updated on 27/Sep/19 $${find}\:{f}\left(\alpha\right)\:=\int\:\:\:\frac{{dx}}{{x}+\alpha+\sqrt{{x}^{\mathrm{2}} \:+\mathrm{3}}} \\ $$$${and}\:{g}\left(\alpha\right)=\int\:\:\:\frac{{dx}}{\left({x}+\alpha+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}}\right)^{\mathrm{2}} }\:\:\:\:{with}\:\alpha\:{real} \\ $$ Commented by mathmax by abdo last…

Find-all-function-f-R-R-such-that-f-x-1-xf-x-f-0-1-f-x-x-

Question Number 4102 by prakash jain last updated on 28/Dec/15 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{function}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$${f}\left({x}+\mathrm{1}\right)={xf}\left({x}\right) \\ $$$${f}\:\left(\mathrm{0}\right)=\mathrm{1}\: \\ $$$${f}\left({x}\right)\neq\Gamma\left({x}\right) \\ $$ Commented by prakash jain…