Menu Close

Category: Relation and Functions

find-the-sequence-u-n-with-verify-u-n-u-n-1-1-n-n-n-1-determine-a-equivalent-of-u-n-is-u-n-convergent-

Question Number 133536 by mathmax by abdo last updated on 22/Feb/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} \mathrm{with}\:\mathrm{verify}\:\mathrm{u}_{\mathrm{n}} +\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\:\sqrt{\mathrm{n}}}\:\:\forall\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{determine}\:\mathrm{a}\:\mathrm{equivalent}\:\mathrm{of}\:\:\mathrm{u}_{\mathrm{n}} \\ $$$$\mathrm{is}\:\mathrm{u}_{\mathrm{n}} \mathrm{convergent}? \\ $$ Terms of…

find-the-sequence-u-n-wich-verify-u-n-u-n-1-1-n-n-2-n-1-

Question Number 133535 by mathmax by abdo last updated on 22/Feb/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} \mathrm{wich}\:\mathrm{verify}\:\:\mathrm{u}_{\mathrm{n}} +\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\:\forall\mathrm{n}\geqslant\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact:…

Question-133431

Question Number 133431 by Algoritm last updated on 22/Feb/21 Answered by benjo_mathlover last updated on 22/Feb/21 $$\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{5xy}−\mathrm{y}=\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{1} \\ $$$$\left(\mathrm{y}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} −\left(\mathrm{5y}−\mathrm{3}\right)\mathrm{x}+\mathrm{1}−\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{5y}−\mathrm{3}\pm\sqrt{\left(\mathrm{5y}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{y}\right)}}{\mathrm{2}\left(\mathrm{y}−\mathrm{1}\right)}…

let-A-p-0-pi-x-p-cos-nx-dx-1-calculate-A-0-A-1-A-2-2-determine-a-relation-of-recurrence-between-A-p-

Question Number 67795 by mathmax by abdo last updated on 31/Aug/19 $${let}\:\:{A}_{{p}} =\int_{\mathrm{0}} ^{\pi} \:{x}^{{p}} \:{cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{0}} ,{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){determine}\:{a}\:{relation}\:{of}\:{recurrence}\:{between}\:\:{A}_{{p}} \\ $$ Commented…