Question Number 68035 by mathmax by abdo last updated on 03/Sep/19 $${let}\:{f}\left({x}\right)\:={e}^{−{i}\alpha{x}} \:\:\:\:,\mathrm{2}\pi\:\:{periodic}\:\:.{developp}\:{f}\:{at}\:{fourier}\:{serie}. \\ $$ Commented by mathmax by abdo last updated on 08/Sep/19 $${f}\left({x}\right)\:=\sum_{{n}=−\infty}…
Question Number 68019 by mathmax by abdo last updated on 03/Sep/19 $${let}\:{F}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} +\mathrm{1}} {e}^{−\mathrm{2}{t}} {sin}\left({xt}\right){dt} \\ $$$${determine}\:{F}\:^{'} \left({x}\right)\:{and}\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{F}\left({x}\right). \\ $$$$ \\ $$ Commented…
Question Number 133536 by mathmax by abdo last updated on 22/Feb/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} \mathrm{with}\:\mathrm{verify}\:\mathrm{u}_{\mathrm{n}} +\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\:\sqrt{\mathrm{n}}}\:\:\forall\mathrm{n}\geqslant\mathrm{1} \\ $$$$\mathrm{determine}\:\mathrm{a}\:\mathrm{equivalent}\:\mathrm{of}\:\:\mathrm{u}_{\mathrm{n}} \\ $$$$\mathrm{is}\:\mathrm{u}_{\mathrm{n}} \mathrm{convergent}? \\ $$ Terms of…
Question Number 68001 by mathmax by abdo last updated on 03/Sep/19 $${let}\:{F}\left({x}\right)=\int_{\mathrm{2}{x}} ^{{x}^{\mathrm{2}} +\mathrm{1}} \:\:\frac{{e}^{−{xt}} }{{x}+\mathrm{2}{t}}{dt}\:\:\:\:{calculate}\:{F}\:^{'} \left({x}\right) \\ $$ Commented by mathmax by abdo last…
Question Number 133535 by mathmax by abdo last updated on 22/Feb/21 $$\mathrm{find}\:\mathrm{the}\:\mathrm{sequence}\:\mathrm{u}_{\mathrm{n}} \mathrm{wich}\:\mathrm{verify}\:\:\mathrm{u}_{\mathrm{n}} +\mathrm{u}_{\mathrm{n}+\mathrm{1}} =\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} }\:\forall\mathrm{n}\geqslant\mathrm{1} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 67974 by mathmax by abdo last updated on 02/Sep/19 $${let}\:{F}\left({x}\right)\:=\int_{{x}} ^{{x}^{\mathrm{2}} } \:\:\:\frac{{arctan}\left({xt}\right)}{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dt}\:\:{calculate}\:{F}\:^{'} \left({x}\right). \\ $$ Commented by mathmax by abdo…
Question Number 67972 by mathmax by abdo last updated on 02/Sep/19 $${if}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\right)} {g}\left({x},{t}\right){dt}\:\:\:\:\:{determine}\:{a}\:{expression}\:{for}\:{F}\:^{'} \left({x}\right). \\ $$ Answered by Tanmay chaudhury last updated on 03/Sep/19…
Question Number 133431 by Algoritm last updated on 22/Feb/21 Answered by benjo_mathlover last updated on 22/Feb/21 $$\mathrm{x}^{\mathrm{2}} \mathrm{y}−\mathrm{5xy}−\mathrm{y}=\mathrm{x}^{\mathrm{2}} −\mathrm{3x}−\mathrm{1} \\ $$$$\left(\mathrm{y}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} −\left(\mathrm{5y}−\mathrm{3}\right)\mathrm{x}+\mathrm{1}−\mathrm{y}=\mathrm{0} \\ $$$$\mathrm{x}\:=\:\frac{\mathrm{5y}−\mathrm{3}\pm\sqrt{\left(\mathrm{5y}−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{y}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{y}\right)}}{\mathrm{2}\left(\mathrm{y}−\mathrm{1}\right)}…
Question Number 2344 by 123456 last updated on 17/Nov/15 $${f}\left({z}\right){e}^{\mathrm{1}−{z}} ={f}\left(\mathrm{1}−{z}\right)\pi^{{z}} \mathrm{sin}\:\left(\pi{z}\right) \\ $$$${f}\left({z}\right)={z}^{\mathrm{2}} ,\Re\left({z}\right)\geqslant\mathrm{1}/\mathrm{2} \\ $$$${f}\left({z}\right)=\mathrm{0},{z}=?? \\ $$ Commented by Yozzi last updated on…
let-A-p-0-pi-x-p-cos-nx-dx-1-calculate-A-0-A-1-A-2-2-determine-a-relation-of-recurrence-between-A-p-
Question Number 67795 by mathmax by abdo last updated on 31/Aug/19 $${let}\:\:{A}_{{p}} =\int_{\mathrm{0}} ^{\pi} \:{x}^{{p}} \:{cos}\left({nx}\right){dx} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}_{\mathrm{0}} ,{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){determine}\:{a}\:{relation}\:{of}\:{recurrence}\:{between}\:\:{A}_{{p}} \\ $$ Commented…