Menu Close

Category: Relation and Functions

let-z-from-C-Z-prove-that-pi-sin-piz-1-z-n-1-1-n-2z-z-2-n-2-and-picos-piz-sin-piz-1-z-n-1-2z-z-2-n-2-

Question Number 67522 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{z}\:{from}\:{C}−{Z}\:\:\:\:\:{prove}\:{that} \\ $$$$\frac{\pi}{{sin}\left(\pi{z}\right)}\:=\frac{\mathrm{1}}{{z}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \mathrm{2}{z}}{{z}^{\mathrm{2}} −{n}^{\mathrm{2}} }\:\:{and} \\ $$$$\frac{\pi{cos}\left(\pi{z}\right)}{{sin}\left(\pi{z}\right)}\:=\frac{\mathrm{1}}{{z}}\:+\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{2}{z}}{{z}^{\mathrm{2}} −{n}^{\mathrm{2}} }…

let-f-x-z-z-e-xz-e-z-1-x-and-z-from-C-1-prove-that-f-x-z-n-0-B-n-x-z-n-n-with-B-n-x-is-a-unitaire-polynome-with-degre-n-determine-B-n-x-interms-of-B-n-number-

Question Number 67520 by mathmax by abdo last updated on 28/Aug/19 $${let}\:{f}\left({x},{z}\right)\:=\frac{{z}\:{e}^{{xz}} }{{e}^{{z}} −\mathrm{1}}\:\:\:\:\:\:\left({x}\:{and}\:{z}\:{from}\:{C}\right) \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{f}\left({x},{z}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{B}_{{n}} \left({x}\right)\frac{{z}^{{n}} }{{n}!} \\ $$$${with}\:{B}_{{n}} \left({x}\right)\:{is}\:{a}\:{unitaire}\:{polynome}\:{with}\:{degre}\:{n} \\ $$$${determine}\:{B}_{{n}}…

calculate-A-x-n-1-1-n-cos-nx-n-and-B-x-n-1-1-n-sin-nx-n-

Question Number 67521 by mathmax by abdo last updated on 28/Aug/19 $${calculate}\:\:\:{A}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} \:{cos}\left({nx}\right)}{{n}} \\ $$$${and}\:{B}\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} \:{sin}\left({nx}\right)}{{n}} \\ $$ Terms of Service…

if-z-e-z-1-n-0-B-n-z-n-n-1-calculate-B-0-B-1-B-2-B-3-B-4-2-prove-that-z-1-e-z-1-1-2-is-a-odd-function-conclude-that-B-2n-1-0-for-n-1-

Question Number 67519 by mathmax by abdo last updated on 28/Aug/19 $${if}\:\frac{{z}}{{e}^{{z}} −\mathrm{1}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{B}_{{n}} \:\frac{{z}^{{n}} }{{n}!} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{B}_{\mathrm{0}} ,{B}_{\mathrm{1}} ,{B}_{\mathrm{2}} ,{B}_{\mathrm{3}} ,{B}_{\mathrm{4}} \\ $$$$\left.\mathrm{2}\right){prove}\:{that}\:{z}\rightarrow\frac{\mathrm{1}}{{e}^{{z}}…