Menu Close

Category: Relation and Functions

f-x-y-f-x-y-xy-f-x-y-x-2-y-2-f-x-y-y-x-100-y-100-f-0-0-f-1-4-

Question Number 1842 by 123456 last updated on 12/Oct/15 $${f}\left({x},{y}\right)={f}\left({x}+{y},{xy}\right) \\ $$$${f}\left({x},{y}\right)={x},−\mathrm{2}\leqslant{y}\leqslant\mathrm{2} \\ $$$${f}\left({x},{y}\right)={y},\mid{x}\mid\geqslant\mathrm{100}\vee\mid{y}\mid\geqslant\mathrm{100} \\ $$$${f}\left(\mathrm{0},\mathrm{0}\right)=? \\ $$$${f}\left(\mathrm{1},\mathrm{4}\right)=? \\ $$ Commented by 123456 last updated…

let-T-n-cos-narccosx-1-calculste-T-0-T-1-T-2-2-find-roots-of-T-n-3-decompose-the-fraction-F-1-T-n-

Question Number 67236 by prof Abdo imad last updated on 24/Aug/19 $${let}\:{T}_{{n}} ={cos}\left({narccosx}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{T}_{\mathrm{0}} ,{T}_{\mathrm{1}} ,{T}_{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){find}\:\:{roots}\:{of}\:{T}_{{n}} \\ $$$$\left.\mathrm{3}\right){decompose}\:\:{the}\:{fraction}\:{F}\:=\frac{\mathrm{1}}{{T}_{{n}} } \\ $$ Commented…

factorise-p-x-1-x-x-2-x-3-x-5-inside-C-x-and-R-x-calculate-p-e-i-pi-5-and-p-cos-pi-5-

Question Number 67234 by prof Abdo imad last updated on 24/Aug/19 $${factorise}\:{p}\left({x}\right)=\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \:+{x}^{\mathrm{5}} \\ $$$${inside}\:{C}\left[{x}\right]\:{and}\:{R}\left[{x}\right] \\ $$$${calculate}\:{p}\left({e}^{{i}\frac{\pi}{\mathrm{5}}} \right)\:{and}\:{p}\left({cos}\left(\frac{\pi}{\mathrm{5}}\right)\right) \\ $$ Commented by mathmax by…

f-x-f-y-2-f-x-y-2-x-y-R-f-x-

Question Number 1668 by 123456 last updated on 30/Aug/15 $$\frac{{f}\left({x}\right)+{f}\left({y}\right)}{\mathrm{2}}={f}\left(\frac{{x}+{y}}{\mathrm{2}}\right),\forall{x},{y}\in\mathbb{R} \\ $$$${f}\left({x}\right)=? \\ $$ Commented by Rasheed Ahmad last updated on 30/Aug/15 $${f}\left({x}\right)\:{has}\:{two}\:{properties}: \\ $$$$\left(\mathrm{1}\right)\:{f}\left({cx}\right)={cf}\left({x}\right)\:{for}\:{constant}\:{c}…

solve-inside-R-3-the-system-2x-y-z-1-x-2y-z-2-x-y-2z-3-

Question Number 67189 by mathmax by abdo last updated on 23/Aug/19 $${solve}\:{inside}\:{R}^{\mathrm{3}} \:{the}\:{system}\:\begin{cases}{\mathrm{2}{x}+{y}+{z}\:=\mathrm{1}}\\{{x}+\mathrm{2}{y}+{z}\:=\mathrm{2}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{{x}+{y}+\mathrm{2}{z}\:=\mathrm{3}\right. \\ $$ Answered by MJS last updated on 23/Aug/19 $${D}=\begin{vmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{1}}&{\mathrm{2}}\end{vmatrix}=\mathrm{4}…