Menu Close

Category: Relation and Functions

lets-x-gt-0-and-take-the-sequence-a-a-0-x-a-n-1-x-a-n-i-proof-that-0-a-n-a-n-1-ii-proof-that-M-such-that-a-n-M-iii-using-i-and-ii-proof-that-lim-n-a-n-exist-iv-compute-lim-n

Question Number 1635 by 123456 last updated on 28/Aug/15 $$\mathrm{lets}\:{x}>\mathrm{0},\:\mathrm{and}\:\mathrm{take}\:\mathrm{the}\:\mathrm{sequence}\:{a} \\ $$$${a}_{\mathrm{0}} =\sqrt{{x}} \\ $$$${a}_{{n}+\mathrm{1}} =\sqrt{{x}+{a}_{{n}} } \\ $$$$\mathrm{i}.\mathrm{proof}\:\mathrm{that}\:\mathrm{0}\leqslant{a}_{{n}} \leqslant{a}_{{n}+\mathrm{1}} \\ $$$$\mathrm{ii}.\mathrm{proof}\:\mathrm{that}\:\exists\mathrm{M}\:\mathrm{such}\:\mathrm{that}\:{a}_{{n}} \leqslant\mathrm{M} \\ $$$$\mathrm{iii}.\mathrm{using}\:\mathrm{i}\:\mathrm{and}\:\mathrm{ii}\:\mathrm{proof}\:\mathrm{that}\:\underset{{n}\rightarrow\infty}…

let-Z-N-0-f-Z-Z-Z-f-m-n-m-n-m-n-1-2-m-prove-that-f-is-a-one-to-one-function-and-also-an-onto-function-

Question Number 67055 by Tony Lin last updated on 22/Aug/19 $${let}\:\mathbb{Z}_{+} =\mathbb{N}\cup\left\{\mathrm{0}\right\},\:{f}:\:\mathbb{Z}_{+} ×\mathbb{Z}_{+} \rightarrow\mathbb{Z}_{+} \\ $$$${f}\left({m},\:{n}\right)=\frac{\left({m}+{n}\right)\left({m}+{n}+\mathrm{1}\right)}{\mathrm{2}}+{m} \\ $$$${prove}\:{that}\:{f}\:{is}\:{a}\:{one}-{to}-{one}\:{function} \\ $$$${and}\:{also}\:{an}\:{onto}\:{function} \\ $$ Terms of Service…

Given-f-x-log-2020-x-and-p-p-p-2020-2020-then-the-value-of-f-p-a-2020-1-2020-c-1-2020-1-2020-b-1-2020-d-2020-e-log-10-20

Question Number 132574 by liberty last updated on 15/Feb/21 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{log}\:_{\mathrm{2020}} \left(\mathrm{x}\right)\:\mathrm{and}\: \\ $$$$\mathrm{p}^{\left(\mathrm{p}\right)^{\mathrm{p}^{\mathrm{2020}} } } \:=\:\mathrm{2020}\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{p}\right)\:=\:… \\ $$$$\left(\mathrm{a}\right)\sqrt[{\mathrm{2020}}]{\mathrm{2020}}\:\:\:\:\:\left(\mathrm{c}\right)\:\sqrt[{\mathrm{2020}}]{\frac{\mathrm{1}}{\mathrm{2020}}} \\ $$$$\left(\mathrm{b}\right)\:\frac{\mathrm{1}}{\mathrm{2020}}\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{2020}\:\:\:\:\:\:\left(\mathrm{e}\right)\:\mathrm{log}\:_{\mathrm{10}} \left(\mathrm{2020}\right) \\ $$…

let-f-x-arctan-1-e-1-x-2-calculate-f-x-and-f-x-1-find-lim-x-f-x-and-lim-x-f-x-3-study-the-variation-of-f-x-4-give-the-equation-of-tangent-to-C-f-at-A-1-f-1-

Question Number 67015 by mathmax by abdo last updated on 21/Aug/19 $${let}\:{f}\left({x}\right)\:={arctan}\left(\mathrm{1}+{e}^{−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \right) \\ $$$${calculate}\:{f}^{'} \left({x}\right)\:\:{and}\:{f}^{''} \left({x}\right). \\ $$$$\left.\mathrm{1}\right){find}\:{lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow−\infty} \:\:\:{f}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){study}\:{the}\:{variation}\:{of}\:{f}\left({x}\right) \\…