Question Number 131573 by mathlove last updated on 06/Feb/21 $$\:{if}\:\:\:\:{f}\left({x}+\frac{\mathrm{1}}{{x}}\right)={x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\:\:\:\:\:{then}\:\:{faind}\:\: \\ $$$${f}\left(\frac{\mathrm{1}}{{x}}\right)=? \\ $$ Answered by rs4089 last updated on 06/Feb/21 $${f}\left({x}+\frac{\mathrm{1}}{{x}}\right)={x}^{\mathrm{3}} +\frac{\mathrm{1}}{{x}^{\mathrm{3}}…
Question Number 66032 by mathmax by abdo last updated on 07/Aug/19 $${simplify}\:\:{w}_{{n}} =\left(\mathrm{1}+{in}\right)^{{n}} −\left(\mathrm{1}−{in}\right)^{{n}} \:{with}\:{n}\:{integr}\:{natural} \\ $$ Commented by mr W last updated on 08/Aug/19…
Question Number 66005 by mathmax by abdo last updated on 07/Aug/19 $${solve}\:\:\:{x}^{\mathrm{2}} {y}^{''} \:+{xy}^{'} −\mathrm{3}{y}\:=\mathrm{4}{e}^{−{x}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 431 by 123456 last updated on 25/Jan/15 $$\mathrm{given} \\ $$$${x}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}−{x}_{{n}} } \\ $$$${x}_{\mathrm{0}} =\mathrm{2} \\ $$$$\mathrm{proof}\:\mathrm{that} \\ $$$$\mathrm{a}.\mathrm{0}<{x}_{{n}} \leqslant\mathrm{2},{n}\in\mathbb{N} \\ $$$$\mathrm{b}.{x}_{{n}} \:\mathrm{is}\:\mathrm{decreasing}…