Question Number 113904 by bobhans last updated on 16/Sep/20 $${If}\:\begin{cases}{{f}\left({x}\right)=\sqrt{\mathrm{2}{x}−\mathrm{5}}}\\{{g}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{1}}\end{cases} \\ $$$${find}\:\left({f}^{−\mathrm{1}} \circ{g}\right)^{−\mathrm{1}} \left({x}\right) \\ $$ Answered by bemath last updated on 16/Sep/20 $${solution}\::\:…
Question Number 48267 by maxmathsup by imad last updated on 21/Nov/18 $${f}\:{is}\:{a}\:{function}\:{verify}\:{f}\left({x}+\mathrm{1}\right)\:+{x}^{\mathrm{2}} =\mathrm{3}{f}\left({x}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left(\mathrm{8}\right)\:{and}\:{f}\left(\mathrm{12}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left({k}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{f}^{\mathrm{2}} \left({k}\right)\:. \\…
Question Number 48174 by Abdo msup. last updated on 20/Nov/18 $${find}\:{lim}_{{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{{n}} \:\:\:{sin}\left(\frac{\pi{x}}{{n}}\right){dx}\:. \\ $$ Commented by Abdo msup. last updated on 20/Nov/18 $${let}\:{A}_{{n}}…
Question Number 48169 by Abdo msup. last updated on 20/Nov/18 $${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({nx}^{\mathrm{2}} \right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} {sin}\left({nx}^{\mathrm{2}} \right){dx}\:{with}\:{n}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{u}_{{n}} {and}\:{v}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}}…
Question Number 113632 by mathmax by abdo last updated on 14/Sep/20 $$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\mathrm{n}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)\mathrm{arctan}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{t}}\right)\mathrm{dt} \\ $$$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$ Terms of Service Privacy…
Question Number 48068 by maxmathsup by imad last updated on 18/Nov/18 $${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\mathrm{1}+{t}^{{n}} } \\ $$$${find}\:{nature}\:{of}\:\Sigma\:{u}_{{n}} \:\:\:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{n}^{\mathrm{2}} }\:\:{and}\:\Sigma\:\frac{{u}_{{n}} }{{n}^{\mathrm{3}} } \\ $$…
Question Number 48065 by maxmathsup by imad last updated on 18/Nov/18 $$\left.{let}\:{f}\:\:\:\::\:\:\right]\mathrm{0},\mathrm{1}\left[\:\:{contnue}\:{integrable}\:\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {f}\left({x}\right){dx}\right. \\ $$$${prove}\:{that}\:\Sigma\:{u}_{{n}} \:{cnverge}\:{and}\:{find}\:{its}\:{sum} \\ $$$$ \\ $$ Commented…
Question Number 113549 by mathmax by abdo last updated on 13/Sep/20 $$\mathrm{let}\:\mathrm{A}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{n}}}\\{\frac{\mathrm{1}}{\mathrm{n}}\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\:\mathrm{A}^{\mathrm{m}} \:\:\:\:\:\left(\mathrm{m}\:\:\mathrm{integr}\:\mathrm{natural}\right) \\ $$$$\left.\mathrm{3}\right)\:\mathrm{coclude}\:\mathrm{A}^{\mathrm{n}} \:\:\:\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}^{\mathrm{n}} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{calculate}\:\mathrm{e}^{\mathrm{A}} \:\mathrm{and}\:\mathrm{e}^{−\mathrm{A}} \\…
Question Number 48009 by maxmathsup by imad last updated on 18/Nov/18 $${let}\:\:\:{f}_{{n}} \left({t}\right)={t}^{{n}−\mathrm{1}} {sin}\left({n}\theta\right)\:{with}\:{t}\:{from}\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\:\theta\:{from}\:\left[\mathrm{0},\pi\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{uniform}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({t}\right)\:{on}\:\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{S}\left({t}\right)=\Sigma\:{f}_{{n}} \left({t}\right)\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {S}\left({t}\right){dt}. \\ $$ Terms…
Question Number 47857 by maxmathsup by imad last updated on 15/Nov/18 $${let}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} \:{and}\:{B}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{A}_{{n}}…