Menu Close

Category: Relation and Functions

f-is-a-function-verify-f-x-1-x-2-3f-x-1-find-f-8-and-f-12-2-calculate-k-0-n-f-k-3-find-k-0-n-f-2-k-

Question Number 48267 by maxmathsup by imad last updated on 21/Nov/18 $${f}\:{is}\:{a}\:{function}\:{verify}\:{f}\left({x}+\mathrm{1}\right)\:+{x}^{\mathrm{2}} =\mathrm{3}{f}\left({x}\right) \\ $$$$\left.\mathrm{1}\right){find}\:{f}\left(\mathrm{8}\right)\:{and}\:{f}\left(\mathrm{12}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\sum_{{k}=\mathrm{0}} ^{{n}} {f}\left({k}\right) \\ $$$$\left.\mathrm{3}\right)\:{find}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{f}^{\mathrm{2}} \left({k}\right)\:. \\…

let-u-n-0-cos-nx-2-dx-and-v-n-0-sin-nx-2-dx-with-n-gt-0-1-calculste-u-n-and-v-n-2-find-nsture-of-u-n-2v-n-and-u-n-2-4v-n-2-3-find-nature-of-u-n-2v-n-2-

Question Number 48169 by Abdo msup. last updated on 20/Nov/18 $${let}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:{cos}\left({nx}^{\mathrm{2}} \right){dx}\:{and}\:{v}_{{n}} =\int_{\mathrm{0}} ^{\infty} {sin}\left({nx}^{\mathrm{2}} \right){dx}\:{with}\:{n}\:>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{u}_{{n}} {and}\:{v}_{{n}} \\ $$$$\left.\mathrm{2}\right){find}\:{nsture}\:{of}\:\Sigma\left({u}_{{n}} +\mathrm{2}{v}_{{n}}…

calculate-U-n-1-n-n-1-1-t-2-arctan-1-1-t-dt-find-lim-n-U-n-

Question Number 113632 by mathmax by abdo last updated on 14/Sep/20 $$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\mathrm{n}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }\right)\mathrm{arctan}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{t}}\right)\mathrm{dt} \\ $$$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} \\ $$ Terms of Service Privacy…

let-f-0-1-contnue-integrable-u-n-1-n-0-1-x-n-f-x-dx-prove-that-u-n-cnverge-and-find-its-sum-

Question Number 48065 by maxmathsup by imad last updated on 18/Nov/18 $$\left.{let}\:{f}\:\:\:\::\:\:\right]\mathrm{0},\mathrm{1}\left[\:\:{contnue}\:{integrable}\:\:{u}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} {f}\left({x}\right){dx}\right. \\ $$$${prove}\:{that}\:\Sigma\:{u}_{{n}} \:{cnverge}\:{and}\:{find}\:{its}\:{sum} \\ $$$$ \\ $$ Commented…

let-A-1-1-n-1-n-1-1-calculate-A-2-2-calculate-A-m-m-integr-natural-3-coclude-A-n-and-lim-n-A-n-4-calculate-e-A-and-e-A-

Question Number 113549 by mathmax by abdo last updated on 13/Sep/20 $$\mathrm{let}\:\mathrm{A}\:\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\mathrm{n}}}\\{\frac{\mathrm{1}}{\mathrm{n}}\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{A}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\:\mathrm{A}^{\mathrm{m}} \:\:\:\:\:\left(\mathrm{m}\:\:\mathrm{integr}\:\mathrm{natural}\right) \\ $$$$\left.\mathrm{3}\right)\:\mathrm{coclude}\:\mathrm{A}^{\mathrm{n}} \:\:\:\mathrm{and}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}^{\mathrm{n}} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{calculate}\:\mathrm{e}^{\mathrm{A}} \:\mathrm{and}\:\mathrm{e}^{−\mathrm{A}} \\…

let-f-n-t-t-n-1-sin-n-with-t-from-0-1-and-from-0-pi-1-prove-the-uniform-convergence-of-f-n-t-on-0-1-2-let-S-t-f-n-t-calculate-0-1-S-t-dt-

Question Number 48009 by maxmathsup by imad last updated on 18/Nov/18 $${let}\:\:\:{f}_{{n}} \left({t}\right)={t}^{{n}−\mathrm{1}} {sin}\left({n}\theta\right)\:{with}\:{t}\:{from}\left[\mathrm{0},\mathrm{1}\left[\:{and}\:\:\theta\:{from}\:\left[\mathrm{0},\pi\left[\right.\right.\right.\right. \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{the}\:{uniform}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({t}\right)\:{on}\:\left[\mathrm{0},\mathrm{1}\left[\right.\right. \\ $$$$\left.\mathrm{2}\right)\:{let}\:{S}\left({t}\right)=\Sigma\:{f}_{{n}} \left({t}\right)\:\:\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {S}\left({t}\right){dt}. \\ $$ Terms…

let-A-n-k-0-n-1-sin-kpi-2n-and-B-n-k-0-n-1-cos-kpi-2n-1-find-A-n-and-B-n-interms-of-n-2-calculate-lim-n-A-n-B-n-3-calculate-lim-n-A-n-lim-n-

Question Number 47857 by maxmathsup by imad last updated on 15/Nov/18 $${let}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right)\:{and}\:{B}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{cos}\left(\frac{{k}\pi}{\mathrm{2}{n}}\right) \\ $$$$\left.\mathrm{1}\right)\:{find}\:{A}_{{n}} \:{and}\:{B}_{{n}} \:{interms}\:{of}\:{n} \\ $$$$\left.\mathrm{2}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{A}_{{n}}…